Skip to main content
Log in

Theorems of Euclidean Geometry Through Calculus

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

References

  1. J. al-Kashi. Miftah al-hisab, 1427.

  2. Apollonius of Perga. De Locis Planis, c. 200 BCE.

  3. M. Buysse. Finite mixing angles in the standard model. https://arxiv.org/pdf/hep-ph/0205213.pdf, (2002).

  4. J.-P. de Gua de Malves. Propositions neuves, et non moins utiles que curieuses, sur le tétraèdre; ou Essai de Tétraédrométrie. Mémoires de l’Académie royale des sciences – ann. 1783 (1786), 363–402.

  5. R. Descartes. Opuscules. Cogitationes privatæ, 1619.

  6. Euclid of Alexandria. Elements, c. 300 BCE.

  7. M. Hardy. Pythagoras made difficult. Mathematical Intelligencer 10:3 (1988), 31.

    Google Scholar 

  8. T. Heath. History of Greek Mathematics. Oxford University Press, 1921.

  9. Heron of Alexandria. Metrica, c. 70 CE.

  10. G. Leibniz. Nova methodus pro maximis et minimis. Acta Eruditorum X (1684), 467–473.

  11. I. Newton. De Methodis Serierum et Fluxionum (1671). Henry Woodfall, 1736.

  12. M. Staring. The Pythagorean proposition: a proof by means of calculus. Mathematics Magazine 69 (1996), 45–46.

    Article  MathSciNet  Google Scholar 

  13. S. Stewart. Some General Theorems of Considerable Use in the Higher Parts of Mathematics. Edinburgh: printed by W. Sands, A. Murray, and J. Cochran. Sold by said W. Sands in the Parliament-Close, and by J. and P. Knapton, at the Crown in Ludgate street, London, 1746.

  14. S. Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe. Mariner Books, 2020.

  15. O. Terquem. Considérations sur le triangle rectiligne d’après Euler. Nouv. Ann. Math. (1) 1 (1842), 70–87.

Download references

Acknowledgments

I thank Raphaël Lefevere for a critical reading of the manuscript and a fruitful collaboration. The initial idea came from previous work in particle physics looking for natural relations between mixing angles and the fermion mass ratios [3], supervised by Jean-Marc Gérard, whom I also thank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Buysse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buysse, M. Theorems of Euclidean Geometry Through Calculus. Math Intelligencer 45, 338–345 (2023). https://doi.org/10.1007/s00283-022-10249-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00283-022-10249-z

Navigation