The Mathematical Intelligencer

, Volume 40, Issue 2, pp 67–75 | Cite as

Mathematics Underfoot: The Formulas That Came to Würzburg from New Haven

  • A. J. Bracken
Years Ago Jemma Lorenat, Editor

On a trip to the German city of Würzburg in 2016, I visited the memorial honouring Wilhelm Röntgen, who discovered x-rays there in 1895 and who was awarded the first Nobel Prize in Physics in 1901 as a result.1

At the time of his discovery, Röntgen was Professor and Head of the Institute of Physics at Julius-Maximilians-Universität (JMU) Würzburg. His laboratory is preserved, complete with much of his equipment, in a building that is open to the public and that is now part of the University of Applied Sciences Würzburg-Schweinfurt.



My thanks to Vincent Hart, Ludvik Bass, Peter Jarvis, Gunnar Bartsch, Anja Schlömerkemper, Wolfgang Schlegel, Steve Webb, Robert Grebner, Denise Stevens, and Matthias Reichling for their various inputs and encouragement.


  1. [1]
    Riesz, P. B., The life of Wilhelm Conrad Roentgen, Am. J. Roentgenol. 165 (1995), 1533–1537.CrossRefGoogle Scholar
  2. [2]
    Bracken, A. J., The mystery of the strange formulae, Phys. World (Oct. 2016, p. 22).Google Scholar
  3. [3]
    Schlegel, W., The tale of the tiles, Phys. World (Dec. 2016, p. 21).Google Scholar
  4. [4]
    Nöth, E., sin x und sin y unter den Füssen (Main-Post, Würzburg, July 2, 1971).Google Scholar
  5. [5]
    MATLAB (MathWorks, Natick, MA, 2016).Google Scholar
  6. [6]
    Bartsch, G., Rätselhafte Spuren in Röntgens Labor (einBLICK, Presse-und Öffentlichkartsarbeit, JMU Würzburg), Dec.13, 2016.
  7. [7]
  8. [8]
    Newton, H. A., and Phillips, A. W., On the Transcendental Curves \(\sin y \sin my =a \sin x \sin nx +b\), Trans. Conn. Acad. Arts Sci. 3 (1874–1878), 97–107 (with 24 plates).
  9. [9]
    Phillips, Andrew W., Biography: Hubert Anson Newton, Amer. Math. Monthly 4 (no. 3) (1897), 67–71.Google Scholar
  10. [10]
    Gibbs, J. Willard, Memoir of Hubert Anson Newton, 1830–1896, Nat. Acad. Sc. USA.Google Scholar
  11. [11]
    Wright, H. P., Early ideals and their realization, in Andrew Wheeler Phillips (Tuttle, Morehouse & Taylor, New Haven, 1915), pp. 5–13.;view=1up;seq=13
  12. [12]
    Roberts, S., On three-bar motion in plane space, Proc. Lond. Math. Soc. s1–7 (1875), 15–23.Google Scholar
  13. [13]
    Cayley, A., On three-bar motion, Proc. Lond. Math. Soc. s1–7 (1876), 136–166.Google Scholar
  14. [14]
    Phillips, A. W., and Beebe, W., Graphic Algebra, or Geometrical Interpretation of the Theory of Equations of One Unknown Quantity (H. Holt, New York, 1904).Google Scholar
  15. [15]
    Our Book Shelf, Nature 13 (no. 338) (1876), 483.Google Scholar
  16. [16]
    Miscellany, Popular Science Monthly 8 (1875), 121.Google Scholar
  17. [17]
    Newton, H. A., Algebraic curves expressed in trigonometric equations, AAAS, 24th Meeting, Detroit, Aug. 11, 1875, Amer. Chemist (Sept. 1875), 103.
  18. [18]
    Phillips, A. W., On certain transcendental curves, AAAS, 24th Meeting, Detroit, Aug. 11, 1875, Amer. Chemist (Sept. 1875), 103.
  19. [19]
    Goodwin, H. M. (Transl. and Ed.), Biographical sketch, in The Fundamental Laws of Electrolytic Conduction (Harper & Bros., NY, 1899), pp. 92–93.
  20. [20]
    Kohlrausch, F. W. G., Leitfaden der Praktische Physik (B. G. Teubner, Leipzig, 1870); Praktische Physik, 24th Ed. (Springer Vieweg, Berlin, 1996).Google Scholar
  21. [21]
    Strouhal, V., Über eine besondere Art der Tonerregung, Ann. d. Phys. 241(10) (1878), 216–251.CrossRefGoogle Scholar
  22. [22]
    Sarpkaya, T., Vortex-induced oscillations: a selective review, J. Appl. Mech. 46 (1979), 241–258.CrossRefGoogle Scholar
  23. [23]
    Novák, V., Čeněk Strouhal, Časopis pro pěstování mathematiky a fysiky (J. for the Promotion of Mathematics and Physics) 39 (1910), 369–383.Google Scholar
  24. [24]
    Gauss, C. F., Disquisitiones generales circa superficies curvas (Typis Dieterichianis, Göttingen, 1828).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations