# Mathematics Underfoot: The Formulas That Came to Würzburg from New Haven

Years Ago Jemma Lorenat, Editor

First Online:

On a trip to the German city of Würzburg in 2016, I visited the memorial honouring Wilhelm Röntgen, who discovered x-rays there in 1895 and who was awarded the first Nobel Prize in Physics in 1901 as a result.^{1}

At the time of his discovery, Röntgen was Professor and Head of the Institute of Physics at Julius-Maximilians-Universität (JMU) Würzburg. His laboratory is preserved, complete with much of his equipment, in a building that is open to the public and that is now part of the University of Applied Sciences Würzburg-Schweinfurt.

## Notes

### Acknowledgements

My thanks to Vincent Hart, Ludvik Bass, Peter Jarvis, Gunnar Bartsch, Anja Schlömerkemper, Wolfgang Schlegel, Steve Webb, Robert Grebner, Denise Stevens, and Matthias Reichling for their various inputs and encouragement.

## References

- [1]Riesz, P. B., The life of Wilhelm Conrad Roentgen,
*Am. J. Roentgenol.*165 (1995), 1533–1537.CrossRefGoogle Scholar - [2]Bracken, A. J., The mystery of the strange formulae,
*Phys. World*(Oct. 2016, p. 22).Google Scholar - [3]Schlegel, W., The tale of the tiles,
*Phys. World*(Dec. 2016, p. 21).Google Scholar - [4]Nöth, E.,
*sin x und sin y unter den Füssen*(Main-Post, Würzburg, July 2, 1971).Google Scholar - [5]
*MATLAB*(MathWorks, Natick, MA, 2016).Google Scholar - [6]Bartsch, G.,
*Rätselhafte Spuren in Röntgens Labor*(einBLICK, Presse-und Öffentlichkartsarbeit, JMU Würzburg), Dec.13, 2016. http://www.presse.uni-wuerzburg.de/aktuell/einblick/einblick_archiv/ausgaben_ab_2013/liste/page/2/zeitraum/2016/12/?tx_news_pi1%5Bcontroller%5D=News&cHash=59ea6b3f02997ba9c44e1fdee0f371a4 - [7]
*Das Fussboden-Rätsel in Röntgens Labor*(Main-Post, Würzburg, Dec. 19, 2016). http://www.mainpost.de/regional/wuerzburg/Allgemeine-nicht-fachgebundene-Universitaeten-Mathematik-Mathematiker-Physik-Roentgen-Roentgen-Gedaechtnisstaette;art735,9448939 - [8]Newton, H. A., and Phillips, A. W., On the Transcendental Curves \(\sin y \sin my =a \sin x \sin nx +b\),
*Trans. Conn. Acad. Arts Sci.*3 (1874–1878), 97–107 (with 24 plates). http://www.biodiversitylibrary.org/item/88413#page/117/mode/1up - [9]Phillips, Andrew W., Biography: Hubert Anson Newton,
*Amer. Math. Monthly*4 (no. 3) (1897), 67–71.Google Scholar - [10]Gibbs, J. Willard, Memoir of Hubert Anson Newton, 1830–1896, Nat. Acad. Sc. USA.Google Scholar
- [11]Wright, H. P., Early ideals and their realization, in
*Andrew Wheeler Phillips*(Tuttle, Morehouse & Taylor, New Haven, 1915), pp. 5–13. https://babel.hathitrust.org/cgi/pt?id=hvd.hn2k3q;view=1up;seq=13 - [12]Roberts, S., On three-bar motion in plane space,
*Proc. Lond. Math. Soc.*s1–7 (1875), 15–23.Google Scholar - [13]Cayley, A., On three-bar motion,
*Proc. Lond. Math. Soc.*s1–7 (1876), 136–166.Google Scholar - [14]Phillips, A. W., and Beebe, W.,
*Graphic Algebra, or Geometrical Interpretation of the Theory of Equations of One Unknown Quantity*(H. Holt, New York, 1904).Google Scholar - [15]Our Book Shelf,
*Nature*13 (no. 338) (1876), 483.Google Scholar - [16]Miscellany,
*Popular Science Monthly*8 (1875), 121.Google Scholar - [17]Newton, H. A., Algebraic curves expressed in trigonometric equations, AAAS, 24th Meeting, Detroit, Aug. 11, 1875,
*Amer. Chemist*(Sept. 1875), 103. https://books.google.com.au/books?id=ZSSduuWOpkAC&pg=PA103 - [18]Phillips, A. W., On certain transcendental curves, AAAS, 24th Meeting, Detroit, Aug. 11, 1875,
*Amer. Chemist*(Sept. 1875), 103. https://books.google.com.au/books?id=ZSSduuWOpkAC&pg=PA103 - [19]Goodwin, H. M. (Transl. and Ed.), Biographical sketch, in
*The Fundamental Laws of Electrolytic Conduction*(Harper & Bros., NY, 1899), pp. 92–93. http://www.archive.org/stream/fundamentallawso00goodrich#page/92/mode/2up - [20]Kohlrausch, F. W. G.,
*Leitfaden der Praktische Physik*(B. G. Teubner, Leipzig, 1870);*Praktische Physik*, 24th Ed. (Springer Vieweg, Berlin, 1996).Google Scholar - [21]Strouhal, V., Über eine besondere Art der Tonerregung,
*Ann. d. Phys.*241(10) (1878), 216–251.CrossRefGoogle Scholar - [22]Sarpkaya, T., Vortex-induced oscillations: a selective review,
*J. Appl. Mech.*46 (1979), 241–258.CrossRefGoogle Scholar - [23]Novák, V., Čeněk Strouhal,
*Časopis pro pěstování mathematiky a fysiky*(*J. for the Promotion of Mathematics and Physics*) 39 (1910), 369–383.Google Scholar - [24]Gauss, C. F.,
*Disquisitiones generales circa superficies curvas*(Typis Dieterichianis, Göttingen, 1828).zbMATHGoogle Scholar

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018