Skip to main content

Advertisement

Log in

CAR T-cell behavior and function revealed by real-time imaging

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Adoptive transfer of T-cells expressing chimeric antigen receptors (CAR) has shown remarkable clinical efficacy against advanced B-cell malignancies. Nonetheless, the field of CAR T-cells is currently facing several major challenges. In particular, the CAR T-cell strategy has not yet produced favorable clinical responses when targeting solid tumors. In this context, it is of paramount importance to understand the determinants that limit the efficacy of T-cell-based immunotherapy. Characterization of CAR T-cells is usually based on flow cytometry and whole-transcriptome profiling. These approaches have been very valuable to determine intrinsic elements that condition T-cell ability to proliferate and expand. However, they do not take into account spatial and kinetic aspects of T-cell responses. In particular, in order to control tumor growth, CAR T-cells need to enter into the tumor, migrate within a complex tumor environment, and form productive conjugates with their targets. Advanced imaging techniques combined with innovative preclinical models represent promising tools to uncover the dynamics of CAR T-cells. In this review, we will discuss recent results on the biology of engineered T-cells that have been obtained with real-time imaging microscopy. Important notions have emerged from these imaging-based studies, such as the multi-killing potential of CAR T-cells. Finally, we will highlight how imaging techniques combined with other tools can solve remaining unresolved questions in the field of engineered T-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

CAR:

Chimeric antigen receptor

IFN:

Interferon

TIL:

Tumor-infiltrating lymphocytes

ICAM:

Intercellular adhesion molecule

pMHC:

Peptide-major histocompatibility

TCR:

T-cell receptor

TME:

Tumor microenvironment

References

  1. Finck A, Gill SI, June CH (2020) Cancer immunotherapy comes of age and looks for maturity. Nat Commun 11(1):3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Milone MC, Xu J, Chen SJ, Collins MA, Zhou J, Powell DJ Jr, Melenhorst JJ (2021) Engineering enhanced CAR T-cells for improved cancer therapy. Nat Cancer 2(8):780–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, Schultz LM, Richards RM, Jiang L, Barsan V, Mancusi R, Geraghty AC, Good Z, Mochizuki AY, Gillespie SM, Toland AMS, Mahdi J, Reschke A, Nie EH, Chau IJ, Rotiroti MC, Mount CW, Baggott C, Mavroukakis S, Egeler E, Moon J, Erickson C, Green S, Kunicki M, Fujimoto M, Ehlinger Z, Reynolds W, Kurra S, Warren KE, Prabhu S, Vogel H, Rasmussen L, Cornell TT, Partap S, Fisher PG, Campen CJ, Filbin MG, Grant G, Sahaf B, Davis KL, Feldman SA, Mackall CL, Monje M (2022) GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603(7903):934–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lesch S, Benmebarek MR, Cadilha BL, Stoiber S, Subklewe M, Endres S, Kobold S (2020) Determinants of response and resistance to CAR T cell therapy. Semin Cancer Biol 65:80–90

    Article  CAS  PubMed  Google Scholar 

  5. Guruprasad P, Lee YG, Kim KH, Ruella M (2021) The current landscape of single-cell transcriptomics for cancer immunotherapy, J Exp Med 218(1):e20201574

  6. Deng Q, Han G, Puebla-Osorio N, Ma MCJ, Strati P, Chasen B, Dai E, Dang M, Jain N, Yang H, Wang Y, Zhang S, Wang R, Chen R, Showell J, Ghosh S, Patchva S, Zhang Q, Sun R, Hagemeister F, Fayad L, Samaniego F, Lee HC, Nastoupil LJ, Fowler N, Eric Davis R, Westin J, Neelapu SS, Wang L, Green MR (2020) Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med 26(12):1878–1887

  7. Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O’Connor RS, Hwang WT, Pequignot E, Ambrose DE, Zhang C, Wilcox N, Bedoya F, Dorfmeier C, Chen F, Tian L, Parakandi H, Gupta M, Young RM, Johnson FB, Kulikovskaya I, Liu L, Xu J, Kassim SH, Davis MM, Levine BL, Frey NV, Siegel DL, Huang AC, Wherry EJ, Bitter H, Brogdon JL, Porter DL, June CH, Melenhorst JJ (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24(5):563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  Google Scholar 

  9. Donnadieu E, Bismuth G, Trautmann A (1994) Antigen recognition by helper T cells elicits a sequence of distinct changes of their shape and intracellular calcium. Curr Biol 4(7):584–595

    Article  CAS  PubMed  Google Scholar 

  10. Negulescu PA, Krasieva TB, Khan A, Kerschbaum HH, Cahalan MD (1996) Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4(5):421–430

    Article  CAS  PubMed  Google Scholar 

  11. Gunzer M, Schafer A, Borgmann S, Grabbe S, Zanker KS, Brocker EB, Kampgen E, Friedl P (2000) Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13(3):323–332

    Article  CAS  PubMed  Google Scholar 

  12. Weigelin B, den Boer AT, Wagena E, Broen K, Dolstra H, de Boer RJ, Figdor CG, Textor J, Friedl P (2021) Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat Commun 12(1):5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86

    Article  CAS  PubMed  Google Scholar 

  14. Anton van der Merwe P, Davis SJ, Shaw AS, Dustin ML (2000) Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin Immunol 12(1):5–21

    Article  CAS  PubMed  Google Scholar 

  15. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227

    Article  CAS  PubMed  Google Scholar 

  16. Harriague J, Bismuth G (2002) Imaging antigen-induced PI3K activation in T cells. Nat Immunol 3(11):1090–1096

    Article  CAS  PubMed  Google Scholar 

  17. Bousso P, Bhakta NR, Lewis RS, Robey E (2002) Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296(5574):1876–1880

    Article  CAS  PubMed  Google Scholar 

  18. Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296(5574):1873–1876

    Article  PubMed  Google Scholar 

  19. Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574):1869–1873

    Article  CAS  PubMed  Google Scholar 

  20. Germain RN, Robey EA, Cahalan MD (2012) A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336(6089):1676–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boulch M, Grandjean CL, Cazaux M, Bousso P (2019) Tumor immunosurveillance and immunotherapies: a fresh look from intravital imaging. Trends Immunol 40(11):1022–1034

    Article  CAS  PubMed  Google Scholar 

  22. Engelhardt JJ, Boldajipour B, Beemiller P, Pandurangi P, Sorensen C, Werb Z, Egeblad M, Krummel MF (2012) Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21(3):402–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manaster Y, Shipony Z, Hutzler A, Kolesnikov M, Avivi C, Shalmon B, Barshack I, Besser MJ, Feferman T, Shakhar G (2019) Reduced CTL motility and activity in avascular tumor areas. Cancer Immunol Immunother 68(8):1287–1301

    Article  CAS  PubMed  Google Scholar 

  24. Breart B, Lemaitre F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Investig 118(4):1390–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Investig 122(3):899–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guerin M, Biton J, Ouakrim H, Regnier F, Lupo A, Alifano M, Damotte D, Donnadieu E (2018) Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA 115(17):E4041–E4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. You R, Artichoker J, Fries A, Edwards AW, Combes AJ, Reeder GC, Samad B, Krummel MF (2021) Active surveillance characterizes human intratumoral T cell exhaustion. J Clin Investig 131(18):e144353

  28. Davenport AJ, Cross RS, Watson KA, Liao Y, Shi W, Prince HM, Beavis PA, Trapani JA, Kershaw MH, Ritchie DS, Darcy PK, Neeson PJ, Jenkins MR (2018) Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci USA 115(9):E2068–E2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davenport AJ, Jenkins MR, Cross RS, Yong CS, Prince HM, Ritchie DS, Trapani JA, Kershaw MH, Darcy PK, Neeson PJ (2015) CAR-T cells inflict sequential killing of multiple tumor target cells. Cancer Immunol Res 3(5):483–494

    Article  CAS  PubMed  Google Scholar 

  30. Liadi I, Singh H, Romain G, Rey-Villamizar N, Merouane A, Adolacion JR, Kebriaei P, Huls H, Qiu P, Roysam B, Cooper LJ, Varadarajan N (2015) Individual motile CD4(+) T cells can participate in efficient multikilling through conjugation to multiple tumor cells. Cancer Immunol Res 3(5):473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cazaux M, Grandjean CL, Lemaitre F, Garcia Z, Beck RJ, Milo I, Postat J, Beltman JB, Cheadle EJ, Bousso P (2019) Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity. J Exp Med 216(5):1038–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Davis MM, Krogsgaard M, Huse M, Huppa J, Lillemeier BF, Li QJ (2007) T cells as a self-referential, sensory organ. Annu Rev Immunol 25:681–695

    Article  CAS  PubMed  Google Scholar 

  33. Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchia A (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375(6527):148–151

    Article  CAS  PubMed  Google Scholar 

  34. Gudipati V, Rydzek J, Doel-Perez I, Goncalves VDR, Scharf L, Konigsberger S, Lobner E, Kunert R, Einsele H, Stockinger H, Hudecek M, Huppa JB (2020) Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat Immunol 21(8):848–856

    Article  CAS  PubMed  Google Scholar 

  35. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL (2015) 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21(6):581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Salter AI, Rajan A, Kennedy JJ, Ivey RG, Shelby SA, Leung I, Templeton ML, Muhunthan V, Voillet V, Sommermeyer D, Whiteaker JR, Gottardo R, Veatch SL, Paulovich AG, Riddell SR (2021) Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci Signal 14(697):eabe2606

  37. Pan J, Tan Y, Deng B, Tong C, Hua L, Ling Z, Song W, Xu J, Duan J, Wang Z, Guo H, Yu X, Chang AH, Zheng Q, Feng X (2020) Frequent occurrence of CD19-negative relapse after CD19 CAR T and consolidation therapy in 14 TP53-mutated r/r B-ALL children. Leukemia 34(12):3382–3387

    Article  PubMed  Google Scholar 

  38. Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, Stetler-Stevenson M, Salem D, Yuan C, Pavletic S, Kanakry JA, Ali SA, Mikkilineni L, Feldman SA, Stroncek DF, Hansen BG, Lawrence J, Patel R, Hakim F, Gress RE, Kochenderfer JN (2018) T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol 36(22):2267–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, Myklebust JH, Kadapakkam M, Weber EW, Tousley AM, Richards RM, Heitzeneder S, Nguyen SM, Wiebking V, Theruvath J, Lynn RC, Xu P, Dunn AR, Vale RD, Mackall CL (2020) Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov 10(5):702–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heitzeneder S, Bosse KR, Zhu Z, Zhelev D, Majzner RG, Radosevich MT, Dhingra S, Sotillo E, Buongervino S, Pascual-Pasto G, Garrigan E, Xu P, Huang J, Salzer B, Delaidelli A, Raman S, Cui H, Martinez B, Bornheimer SJ, Sahaf B, Alag A, Fetahu IS, Hasselblatt M, Parker KR, Anbunathan H, Hwang J, Huang M, Sakamoto K, Lacayo NJ, Klysz DD, Theruvath J, Vilches-Moure JG, Satpathy AT, Chang HY, Lehner M, Taschner-Mandl S, Julien JP, Sorensen PH, Dimitrov DS, Maris JM, Mackall CL (2022) GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell 40(1):53–69 e9

  41. Mansilla-Soto J, Eyquem J, Haubner S, Hamieh M, Feucht J, Paillon N, Zucchetti AE, Li Z, Sjostrand M, Lindenbergh PL, Saetersmoen M, Dobrin A, Maurin M, Iyer A, Garcia Angus A, Miele MM, Zhao Z, Giavridis T, van der Stegen SJC, Tamzalit F, Riviere I, Huse M, Hendrickson RC, Hivroz C, Sadelain M (2022) HLA-independent T cell receptors for targeting tumors with low antigen density. Nat Med 28(2): 345–352

  42. Harjunpaa H, Llort Asens M, Guenther C, Fagerholm SC (2019) Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol 10:1078

  43. Franciszkiewicz K, Le Floc’h A, Boutet M, Vergnon I, Schmitt A, Mami-Chouaib F (2013) CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. Can Res 73(2):617–628

    Article  CAS  Google Scholar 

  44. Demetriou P, Abu-Shah E, Valvo S, McCuaig S, Mayya V, Kvalvaag A, Starkey T, Korobchevskaya K, Lee LYW, Friedrich M, Mann E, Kutuzov MA, Morotti M, Wietek N, Rada H, Yusuf S, Afrose J, Siokis A, Oxford IBDCI, Meyer-Hermann M, Ahmed AA, Depoil D, Dustin ML (2020) A dynamic CD2-rich compartment at the outer edge of the immunological synapse boosts and integrates signals. Nat Immunol 21(10):1232–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kantari-Mimoun C, Barrin S, Vimeux L, Haghiri S, Gervais C, Joaquina S, Mittelstaet J, Mockel-Tenbrinck N, Kinkhabwala A, Damotte D, Lupo A, Sibony M, Alifano M, Dondi E, Bercovici N, Trautmann A, Kaiser AD, Donnadieu E (2021) CAR T-cell entry into tumor islets is a two-step process dependent on IFNgamma and ICAM-1. Cancer Immunol Res 9(12):1425–1438

    Article  CAS  PubMed  Google Scholar 

  46. Kruger K, Buning C, Schriever F (2001) Activated T lymphocytes bind in situ to stromal tissue of colon carcinoma but lack adhesion to tumor cells. Eur J Immunol 31(1):138–145

    Article  CAS  PubMed  Google Scholar 

  47. Dong E, Yue XZ, Shui L, Liu BR, Li QQ, Yang Y, Luo H, Wang W, Yang HS (2021) IFN-gamma surmounts PD-L1/PD1 inhibition to CAR-T cell therapy by upregulating ICAM-1 on tumor cells. Signal Transduct Target Ther 6(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lotscher J, Marti ILAA, Kirchhammer N, Cribioli E, Giordano Attianese GMP, Trefny MP, Lenz M, Rothschild SI, Strati P, Kunzli M, Lotter C, Schenk SH, Dehio P, Loliger J, Litzler L, Schreiner D, Koch V, Page N, Lee D, Grahlert J, Kuzmin D, Burgener AV, Merkler D, Pless M, Balmer ML, Reith W, Huwyler J, Irving M, King CG, Zippelius A, Hess C (2022) Magnesium sensing via LFA-1 regulates CD8(+) T cell effector function. Cell 185(4):585–602 (e29)

    Article  CAS  PubMed  Google Scholar 

  49. Larson RC, Kann MC, Bailey SR, Haradhvala NJ, Llopis PM, Bouffard AA, Scarfo I, Leick MB, Grauwet K, Berger TR, Stewart K, Anekal PV, Jan M, Joung J, Schmidts A, Ouspenskaia T, Law T, Regev A, Getz G, Maus MV (2022) CAR T cell killing requires the IFNgammaR pathway in solid but not liquid tumours. Nature 604(7906):563–570

    Article  CAS  PubMed  Google Scholar 

  50. Romain G, Strati P, Rezvan A, Fathi M, Bandey IN, Adolacion JRT, Heeke D, Liadi I, Marques-Piubelli ML, Solis LM, Mahendra A, Vega F, Cooper LJ, Singh H, Mattie M, Bot A, Neelapu SS, Varadarajan N (2022) Multidimensional single-cell analysis identifies a role for CD2-CD58 interactions in clinical antitumor T cell responses. J Clin Investig 132(17):e159402

  51. M. Boulch, M. Cazaux, Y. Loe-Mie, R. Thibaut, B. Corre, F. Lemaitre, C.L. Grandjean, Z. Garcia, P. Bousso (2021) A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity, Sci Immunol 6(57):eabd4344

  52. Adusumilli PS, Zauderer MG, Riviere I, Solomon SB, Rusch VW, O'Cearbhaill RE, Zhu A, Cheema W, Chintala NK, Halton E, Pineda J, Perez-Johnston R, Tan KS, Daly B, Araujo Filho JA, Ngai D, McGee E, Vincent A, Diamonte C, Sauter JL, Modi S, Sikder D, Senechal B, Wang X, Travis WD, Gonen M, Rudin CM, Brentjens RJ, Jones DR, Sadelain M (2021) A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov 11(11):2748–2763

  53. Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, Sadelain M, Adusumilli PS (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Investig 126(8):3130–3144

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dekkers JF, Alieva M, Cleven A, Keramati F, Wezenaar AKL, van Vliet EJ, Puschhof J, Brazda P, Johanna I, Meringa AD, Rebel HG, Buchholz MB, Barrera Roman M, Zeeman AL, de Blank S, Fasci D, Geurts MH, Cornel AM, Driehuis E, Millen R, Straetemans T, Nicolasen MJT, Aarts-Riemens T, Ariese HCR, Johnson HR, van Ineveld RL, Karaiskaki F, Kopper O, Bar-Ephraim YE, Kretzschmar K, Eggermont AMM, Nierkens S, Wehrens EJ, Stunnenberg HG, Clevers H, Kuball J, Sebestyen Z, Rios AC (2022) Uncovering the mode of action of engineered T cells in patient cancer organoids, Nat Biotechnol. Online ahead of print

  55. Lanitis E, Dangaj D, Irving M, Coukos G (2017) Mechanisms regulating T-cell infiltration and activity in solid tumors, Ann Oncol 28(suppl_12):xii18-xii32

  56. Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nahrig J, Fend F, Weber W, Busch DH, Peschel C (2008) Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother 57(2):271–280

    Article  PubMed  Google Scholar 

  57. PfeiferR, Henze J, Wittich K, Gosselink A, Kinkhabwala A, Gremse F, Bleilevens C, Bigott K, Jungblut M, Hardt O, Alves F, Al Rawashdeh W (2022) A multimodal imaging workflow for monitoring CAR T cell therapy against solid tumor from whole-body to single-cell level. Theranostics 12(11):4834–4850

  58. Skovgard MS, Hocine HR, Saini JK, Moroz M, Bellis RY, Banerjee S, Morello A, Ponomarev V, Villena-Vargas J, Adusumilli PS (2021) Imaging CAR T-cell kinetics in solid tumors: translational implications. Mol Ther Oncolytics 22:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Asrir A, Tardiveau C, Coudert J, Laffont R, Blanchard L, Bellard E, Veerman K, Bettini S, Lafouresse F, Vina E, Tarroux D, Roy S, Girault I, Molinaro I, Martins F, Scoazec JY, Ortega N, Robert C, Girard JP (2022) Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 40(3):318–334 (e9)

    Article  CAS  PubMed  Google Scholar 

  60. Theruvath J, Sotillo E, Mount CW, Graef CM, Delaidelli A, Heitzeneder S, Labanieh L, Dhingra S, Leruste A, Majzner RG, Xu P, Mueller S, Yecies DW, Finetti MA, Williamson D, Johann PD, Kool M, Pfister S, Hasselblatt M, Fruhwald MC, Delattre O, Surdez D, Bourdeaut F, Puget S, Zaidi S, Mitra SS, Cheshier S, Sorensen PH, Monje M, Mackall CL (2020) Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat Med 26(5):712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tchou J, Zhao Y, Levine BL, Zhang PJ, Davis MM, Melenhorst JJ, Kulikovskaya I, Brennan AL, Liu X, Lacey SF, Posey AD Jr, Williams AD, So A, Conejo-Garcia JR, Plesa G, Young RM, McGettigan S, Campbell J, Pierce RH, Matro JM, DeMichele AM, Clark AS, Cooper LJ, Schuchter LM, Vonderheide RH, June CH (2017) Safety and efficacy of intratumoral injections of chimeric antigen receptor cells in metastatic breast cancer. Cancer Immunol Res 5(12):1152–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schmidts A, Wehrli M, Maus MV (2021) Toward better understanding and management of CAR-T cell-associated toxicity. Annu Rev Med 72:365–382

    Article  CAS  PubMed  Google Scholar 

  63. Donnadieu E, Luu M, Alb M, Anliker B, Arcangeli S, Bonini C, De Angelis B, Choudhary R, Espie D, Galy A, Holland C, Ivics Z, Kantari-Mimoun C, Kersten MJ, Kohl U, Kuhn C, Laugel B, Locatelli F, Marchiq I, Markman J, Moresco MA, Morris E, Negre H, Quintarelli C, Rade M, Reiche K, Renner M, Ruggiero E, Sanges C, Stauss H, Themeli M, Van den Brulle J, Hudecek M, Casucci M (2022) Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. J Immunother Cancer 10(5):e003486

  64. Morris EC, Neelapu SS, Giavridis T, Sadelain M (2022) Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol 22(2):85–96

    Article  CAS  PubMed  Google Scholar 

  65. LiuD, Xu X, Dai Y, Zhao X, Bao S, Ma W, Zha L, Liu S, Liu Y, Zheng J, Shi M (2021) Blockade of AIM2 inflammasome or alpha1-AR ameliorates IL-1beta release and macrophage-mediated immunosuppression induced by CAR-T treatment. J Immunother Cancer 9(1):e001466

  66. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M (2018) CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 24(6):731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, Yeung C, Liles WC, Wurfel M, Lopez JA, Chen J, Chung D, Harju-Baker S, Ozpolat T, Fink KR, Riddell SR, Maloney DG, Turtle CJ (2017) Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 7(12):1404–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, Sanvito F, Ponzoni M, Doglioni C, Cristofori P, Traversari C, Bordignon C, Ciceri F, Ostuni R, Bonini C, Casucci M, Bondanza A (2018) Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 24(6):739–748

    Article  CAS  PubMed  Google Scholar 

  69. Faulhaber LD, Phuong AQ, Hartsuyker KJ, Cho Y, Mand KK, Harper SD, Olson AK, Garden GA, Shih AY, Gust J (2022) Brain capillary obstruction during neurotoxicity in a mouse model of anti-CD19 chimeric antigen receptor T-cell therapy. Brain Commun 4(1):fcab309

  70. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seif M, Kakoschke TK, Ebel F, Bellet MM, Trinks N, Renga G, Pariano M, Romani L, Tappe B, Espie D, Donnadieu E, Hunniger K, Hader A, Sauer M, Damotte D, Alifano M, White PL, Backx M, Nerreter T, Machwirth M, Kurzai O, Prommersberger S, Einsele H, Hudecek M, Loffler J (2022) CAR T cells targeting Aspergillus fumigatus are effective at treating invasive pulmonary aspergillosis in preclinical models. Sci Transl Med 14(664):eabh1209

  72. Yan C, Yang Q, Zhang S, Millar DG, Alpert EJ, Do D, Veloso A, Brunson DC, Drapkin BJ, Stanzione M, Scarfo I, Moore JC, Iyer S, Qin Q, Wei Y, McCarthy KM, Rawls JF, Dyson NJ, Cobbold M, Maus MV, Langenau DM (2021) Single-cell imaging of T cell immunotherapy responses in vivo. J Exp Med 218(10)

Download references

Funding

This research was funded by Ligue National Contre le Cancer, grant number EL2020.LNCC/EmD.

Author information

Authors and Affiliations

Authors

Contributions

DE and ED conceived, wrote the article, and designed the figure.

Corresponding author

Correspondence to Emmanuel Donnadieu.

Ethics declarations

Conflict of interest

Author DE is employed by Invectys.

The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Novel immunotherapeutic combinations moving forward: The modulation of the immunosuppressive microenvironment - Guest Editor: Mads Hald Andersen

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espie, D., Donnadieu, E. CAR T-cell behavior and function revealed by real-time imaging. Semin Immunopathol 45, 229–239 (2023). https://doi.org/10.1007/s00281-023-00983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-023-00983-7

Keywords

Navigation