Skip to main content

Advertisement

Log in

Sex differences in the inflammatory response to stroke

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Ischemic stroke is a leading cause of morbidity and mortality and disproportionally affects women, in part due to their higher longevity. Older women have poorer outcomes after stroke with high rates of cognitive deficits, depression, and reduced quality of life. Post-stroke inflammatory responses are also sexually dimorphic and drive differences in infarct size and recovery. Factors that influence sex-specific immune responses can be both intrinsic and extrinsic. Differences in gonadal hormone exposure, sex chromosome compliment, and environmental/social factors can drive changes in transcriptional and metabolic profiles. In addition, how these variables interact, changes across the lifespan. After the onset of ischemic injury, necrosis and apoptosis occur, which activate microglia and other glial cells within the central nervous system, promoting the release of cytokines and chemokines and neuroinflammation. Cells involved in innate and adaptive immune responses also have dual functions after stroke as they can enhance inflammation acutely, but also contribute to suppression of the inflammatory cascade and later repair. In this review, we provide an overview of the current literature on sex-specific inflammatory responses to ischemic stroke. Understanding these differences is critical to identifying therapeutic options for both men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW, American Heart Association Council on E, Stroke Statistics S (2020) Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation 141:e139–e596

    Article  PubMed  Google Scholar 

  2. Ovbiagele B, Goldstein LB, Higashida RT, Howard VJ, Johnston SC, Khavjou OA, Lackland DT, Lichtman JH, Mohl S, Sacco RL, Saver JL, Trogdon JG, American Heart Association Advocacy Coordinating C, Stroke C (2013) Forecasting the future of stroke in the United States: a policy statement from the American Heart Association and American Stroke Association. Stroke 44:2361–75

    Article  PubMed  Google Scholar 

  3. Centers for Disease C, Prevention (2009) Stroke 37:345–50

    Google Scholar 

  4. Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA (2006) The lifetime risk of stroke: estimates from the Framingham Study. Stroke 37:345–350

    Article  PubMed  Google Scholar 

  5. Reeves MJ, Bushnell CD, Howard G, Gargano JW, Duncan PW, Lynch G, Khatiwoda A, Lisabeth L (2008) Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol 7:915–926

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leppert MH, Burke JF, Lisabeth LD, Madsen TE, Kleindorfer DO, Sillau S, Schwamm LH, Daugherty SL, Bradley CJ, Ho PM, Poisson SN (2022) Systematic review of sex differences in ischemic strokes among young adults: are young women disproportionately at risk? Stroke 53:319–327

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sealy-Jefferson S, Wing JJ, Sanchez BN, Brown DL, Meurer WJ, Smith MA, Morgenstern LB, Lisabeth LD (2012) Age- and ethnic-specific sex differences in stroke risk. Gend Med 9:121–128

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lewsey JD, Gillies M, Jhund PS, Chalmers JW, Redpath A, Briggs A, Walters M, Langhorne P, Capewell S, McMurray JJ, Macintyre K (2009) Sex differences in incidence, mortality, and survival in individuals with stroke in Scotland, 1986 to 2005. Stroke 40:1038–1043

    Article  PubMed  Google Scholar 

  9. Madsen TE, Khoury J, Alwell K, Moomaw CJ, Rademacher E, Flaherty ML, Woo D, Mackey J, De Los Rios La Rosa F, Martini S, Ferioli S, Adeoye O, Khatri P, Broderick JP, Kissela BM, Kleindorfer D (2017) Sex-specific stroke incidence over time in the Greater Cincinnati/Northern Kentucky Stroke Study. Neurol 89:990–6

    Article  Google Scholar 

  10. Carandang R, Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Kannel WB, Wolf PA (2006) Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. JAMA 296:2939–2946

    Article  CAS  PubMed  Google Scholar 

  11. Turtzo LC, McCullough LD (2008) Sex differences in stroke. Cerebrovasc Dis 26:462–474

    Article  PubMed  PubMed Central  Google Scholar 

  12. Poorthuis MH, Algra AM, Algra A, Kappelle LJ, Klijn CJ (2017) Female- and male-specific risk factors for stroke: a systematic review and meta-analysis. JAMA Neurol 74:75–81

    Article  PubMed  Google Scholar 

  13. Chang BP, Wira C, Miller J, Akhter M, Barth BE, Willey J, Nentwich L, Madsen T (2018) Neurology concepts: young women and ischemic stroke-evaluation and management in the emergency department. Acad Emerg Med 25:54–64

    Article  PubMed  Google Scholar 

  14. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, Gillum RF, Kim YH, McAnulty JH Jr, Zheng ZJ, Forouzanfar MH, Naghavi M, Mensah GA, Ezzati M, Murray CJ (2014) Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129:837–847

    Article  PubMed  Google Scholar 

  15. Wang TJ, Massaro JM, Levy D, Vasan RS, Wolf PA, D’Agostino RB, Larson MG, Kannel WB, Benjamin EJ (2003) A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the community: the Framingham Heart Study. JAMA 290:1049–1056

    Article  PubMed  Google Scholar 

  16. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ (2010) Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 137:263–272

    Article  PubMed  Google Scholar 

  17. Piccini JP, Simon DN, Steinberg BA, Thomas L, Allen LA, Fonarow GC, Gersh B, Hylek E, Kowey PR, Reiffel JA, Naccarelli GV, Chan PS, Spertus JA, Peterson ED, Outcomes Registry for Better Informed Treatment of Atrial Fibrillation I, Patients (2016) Differences in clinical and functional outcomes of atrial fibrillation in women and men: two-year results from the ORBIT-AF Registry. JAMA Cardiol 1:282–91

    Article  PubMed  Google Scholar 

  18. Zelniker TA, Ardissino M, Andreotti F, O’Donoghue ML, Yin O, Park J-G, Murphy SA, Ruff CT, Lanz HJ, Antman EM, Braunwald E, Giugliano RP, Merlini PA (2021) Comparison of the efficacy and safety outcomes of edoxaban in 8040 women versus 13 065 men with atrial fibrillation in the ENGAGE AF-TIMI 48 Trial. Circulation 143:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McCullough LD, Hurn PD (2003) Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab 14:228–235

    Article  CAS  PubMed  Google Scholar 

  20. Spychala MS, Honarpisheh P, McCullough LD (2017) Sex differences in neuroinflammation and neuroprotection in ischemic stroke. J Neurosci Res 95:462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anthony S, Cabantan D, Monsour M, Borlongan CV (2022) Neuroinflammation, stem cells, and stroke. Stroke 53:1460–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schuhmann MK, Kollikowski AM, Marz AG, Bieber M, Pham M, Stoll G (2021) Danger-associated molecular patterns are locally released during occlusion in hyper-acute stroke. Brain Behav Immun Health 15:100270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roh JS, Sohn DH (2018) Damage-Associated molecular patterns in inflammatory diseases. Immune Netw 18:e27

    Article  PubMed  PubMed Central  Google Scholar 

  24. Patrizz AN, Moruno-Manchon JF, O’Keefe LM, Doran SJ, Patel AR, Venna VR, Tsvetkov AS, Li J, McCullough LD (2021) Sex-specific differences in autophagic responses to experimental ischemic stroke. Cells 10(7):1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan M, Siegel C, Zeng Z, Li J, Liu F, McCullough LD (2009) Sex differences in the response to activation of the poly (ADP-ribose) polymerase pathway after experimental stroke. Exp Neurol 217:210–218

    Article  CAS  PubMed  Google Scholar 

  26. McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD (2005) Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 25:502–512

    Article  CAS  PubMed  Google Scholar 

  27. Xu H, Ge Y, Liu Y, Zheng Y, Hu R, Ren C, Liu Q (2022) Identification of the key genes and immune infiltrating cells determined by sex differences in ischaemic stroke through co-expression network module. IET Syst Biol 16:28–41

    Article  PubMed  Google Scholar 

  28. Szeplaki G, Szegedi R, Hirschberg K, Gombos T, Varga L, Karadi I, Entz L, Szeplaki Z, Garred P, Prohaszka Z, Fust G (2009) Strong complement activation after acute ischemic stroke is associated with unfavorable outcomes. Atherosclerosis 204:315–320

    Article  CAS  PubMed  Google Scholar 

  29. Schafer MK, Schwaeble WJ, Post C, Salvati P, Calabresi M, Sim RB, Petry F, Loos M, Weihe E (2000) Complement C1q is dramatically up-regulated in brain microglia in response to transient global cerebral ischemia. J Immunol 164:5446–5452

    Article  CAS  PubMed  Google Scholar 

  30. Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, Lambris JD, Huber-Lang M (2008) Interaction between the coagulation and complement system. Adv Exp Med Biol 632:71–79

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lubart A, Benbenishty A, Har-Gil H, Laufer H, Gdalyahu A, Assaf Y, Blinder P (2021) Single cortical microinfarcts lead to widespread microglia/macrophage migration along the white matter. Cereb Cortex 31:248–266

    Article  PubMed  Google Scholar 

  32. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991

    Article  CAS  PubMed  Google Scholar 

  34. Ugidos IF, Pistono C, Korhonen P, Gómez-Budia M, Sitnikova V, Klecki P, Stanová I, Jolkkonen J, Malm T (2022) Sex differences in poststroke inflammation: a focus on microglia across the lifespan. Stroke 53:1500–1509

    Article  CAS  PubMed  Google Scholar 

  35. Jurga AM, Paleczna M, Kuter KZ (2020) Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci 14:198

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16:142

    Article  PubMed  PubMed Central  Google Scholar 

  37. Neher JJ, Cunningham C (2019) Priming microglia for innate immune memory in the brain. Trends Immunol 40:358–374

    Article  CAS  PubMed  Google Scholar 

  38. Xiong XY, Liu L, Yang QW (2016) Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol 142:23–44

    Article  CAS  PubMed  Google Scholar 

  39. Huang M, Wan Y, Mao L, He QW, Xia YP, Li M, Li YN, Jin HJ, Hu B (2017) Inhibiting the migration of M1 microglia at hyperacute period could improve outcome of tMCAO rats. CNS Neurosci Ther 23:222–232

    Article  CAS  PubMed  Google Scholar 

  40. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295

    Article  CAS  PubMed  Google Scholar 

  41. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saijo K, Crotti A, Glass CK (2013) Regulation of microglia activation and deactivation by nuclear receptors. Glia 61:104–111

    Article  PubMed  Google Scholar 

  43. Zhu J, Cao D, Guo C, Liu M, Tao Y, Zhou J, Wang F, Zhao Y, Wei J, Zhang Y, Fang W, Li Y (2019) Berberine facilitates angiogenesis against ischemic stroke through modulating microglial polarization via AMPK signaling. Cell Mol Neurobiol 39:751–768

    Article  CAS  PubMed  Google Scholar 

  44. Choi JY, Kim JY, Kim JY, Park J, Lee WT, Lee JE (2017) M2 phenotype microglia-derived cytokine stimulates proliferation and neuronal differentiation of endogenous stem cells in ischemic brain. Exp Neurobiol 26:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fischer S, Nasyrov E, Brosien M, Preissner KT, Marti HH, Kunze R (2021) Self-extracellular RNA promotes pro-inflammatory response of astrocytes to exogenous and endogenous danger signals. J Neuroinflammation 18:252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, Shi FD, Hao J (2017) Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 114:E396–E405

    CAS  PubMed  Google Scholar 

  47. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, Orthey E, Arumugam TV, Leypoldt F, Simova O, Thom V, Friese MA, Prinz I, Holscher C, Glatzel M, Korn T, Gerloff C, Tolosa E, Magnus T (2012) Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 120:3793–3802

    Article  CAS  PubMed  Google Scholar 

  48. Anrather J, Iadecola C (2016) Inflammation and stroke: an overview. Neurotherapeutics 13:661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rezaie AR (2014) Protease-activated receptor signalling by coagulation proteases in endothelial cells. Thromb Haemost 112:876–882

    Article  PubMed  PubMed Central  Google Scholar 

  50. Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ (2016) Inflammatory disequilibrium in stroke. Circ Res 119:142–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roy-O’Reilly MA, Ahnstedt H, Spychala MS, Munshi Y, Aronowski J, Sansing LH, McCullough LD (2020) Aging exacerbates neutrophil pathogenicity in ischemic stroke. Aging (Albany NY) 12:436–461

    Article  CAS  PubMed  Google Scholar 

  52. Xue J, Huang W, Chen X, Li Q, Cai Z, Yu T, ShaoBJJoS, Diseases C. (2017) Neutrophil-to-lymphocyte ratio is a prognostic marker in acute ischemic stroke. J Stroke Cerebrovasc Dis 26:650–7

    Article  PubMed  Google Scholar 

  53. Otxoa-de-Amezaga A, Miró-Mur F, Pedragosa J, Gallizioli M, Justicia C, Gaja-Capdevila N, Ruíz-Jaen F, Salas-Perdomo A, Bosch A, Calvo M, Márquez-Kisinousky L, Denes A, Gunzer M, Planas AM (2019) Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathol 137:321–341

    Article  CAS  PubMed  Google Scholar 

  54. Perl M, Chung CS, Perl U, Biffl WL, Cioffi WG, Ayala A (2007) Beneficial versus detrimental effects of neutrophils are determined by the nature of the insult. J Am Coll Surg 204:840–852 (discussion 52-3)

    Article  PubMed  Google Scholar 

  55. Banerjee A, McCullough LD (2022) Sex-specific immune responses in stroke. Stroke 53:1449–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laridan E, Denorme F, Desender L, Francois O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82:223–232

    Article  CAS  PubMed  Google Scholar 

  57. Sas AR, Carbajal KS, Jerome AD, Menon R, Yoon C, Kalinski AL, Giger RJ, Segal BM (2020) A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat Immunol 21:1496–1505

    Article  PubMed  PubMed Central  Google Scholar 

  58. Catalfamo M, Henkart PA (2003) Perforin and the granule exocytosis cytotoxicity pathway. Curr Opin Immunol 15:522–527

    Article  CAS  PubMed  Google Scholar 

  59. Clarkson BD, Ling C, Shi Y, Harris MG, Rayasam A, Sun D, Salamat MS, Kuchroo V, Lambris JD, Sandor M, Fabry Z (2014) T cell-derived interleukin (IL)-21 promotes brain injury following stroke in mice. J Exp Med 211:595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Konoeda F, Shichita T, Yoshida H, Sugiyama Y, Muto G, Hasegawa E, Morita R, Suzuki N, Yoshimura AJB, communications br (2010) Therapeutic effect of IL-12/23 and their signaling pathway blockade on brain ischemia model. Biochem Biophys Res Commun 402:500–506

    Article  CAS  PubMed  Google Scholar 

  61. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R (2012) The immunology of acute stroke. Nat Rev Neurol 8:401–410

    Article  CAS  PubMed  Google Scholar 

  62. de Bilbao F, Arsenijevic D, Moll T, Garcia-Gabay I, Vallet P, Langhans W, Giannakopoulos P (2009) In vivo over-expression of interleukin-10 increases resistance to focal brain ischemia in mice. J Neurochem 110:12–22

    Article  PubMed  Google Scholar 

  63. Li P, Mao L, Liu X, Gan Y, Zheng J, Thomson AW, Gao Y, Chen J, Hu X (2014) Essential role of program death 1-ligand 1 in regulatory T-cell-afforded protection against blood-brain barrier damage after stroke. Stroke 45:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, Sakai R, Matsuo K, Nakayama T, Yoshie O, Nakatsukasa H, Chikuma S, Shichita T, Yoshimura A (2019) Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565:246–250

    Article  CAS  PubMed  Google Scholar 

  65. Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, Dai X, Iyer K, Hitchens TK, Foley LM, Li S, Stolz DB, Chen K, Ding Y, Thomson AW, Leak RK, Chen J, Hu X (2021) Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 54(1527–42):e8

    Google Scholar 

  66. Wang J, Xie L, Yang C, Ren C, Zhou K, Wang B, Zhang Z, Wang Y, Jin K, Yang G-Y (2015) Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front Cell Neurosci 9:361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A 100:15983–15988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lambiase A, Bracci-Laudiero L, Bonini S, Bonini S, Starace G, D’Elios MM, De Carli M, Aloe L (1997) Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors. J Allergy Clin Immunol 100:408–414

    Article  CAS  PubMed  Google Scholar 

  69. Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, Offner H (2011) Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 31:8556–8563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sahota P, Vahidy F, Nguyen C, Bui TT, Yang B, Parsha K, Garrett J, Bambhroliya A, Barreto A, Grotta JC, Aronowski J, Rahbar MH, Savitz S (2013) Changes in spleen size in patients with acute ischemic stroke: a pilot observational study. Int J Stroke 8:60–67

    Article  PubMed  Google Scholar 

  71. Rasouli J, Lekhraj R, Ozbalik M, Lalezari P, Casper D (2011) Brain-spleen inflammatory coupling: a literature review. Einstein J Biol Med 27:74–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Anthony S, Cabantan D, Monsour M, Borlongan CV (2022) Neuroinflammation, stem cells, and stroke. Stroke 53:1460–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ajmo CT Jr, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR (2008) The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 86:2227–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dotson AL, Wang J, Saugstad J, Murphy SJ, Offner H (2015) Splenectomy reduces infarct volume and neuroinflammation in male but not female mice in experimental stroke. J Neuroimmunol 278:289–298

    Article  CAS  PubMed  Google Scholar 

  75. Seifert HA, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark AA, Saugstad JA, Offner H (2017) Sex differences in regulatory cells in experimental stroke. Cell Immunol 318:49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Banerjee A, Wang J, Bodhankar S, Vandenbark AA, Murphy SJ, Offner H (2013) Phenotypic changes in immune cell subsets reflect increased infarct volume in male vs. female mice. Transl Stroke Res 4:554–563

    Article  CAS  PubMed  Google Scholar 

  77. Seifert HA, Offner H (2018) The splenic response to stroke: from rodents to stroke subjects. J Neuroinflammation 15:195

    Article  PubMed  PubMed Central  Google Scholar 

  78. Honarpisheh P, Bryan RM, McCullough LD (2022) Aging microbiota-gut-brain axis in stroke risk and outcome 130:1112–1144

    CAS  Google Scholar 

  79. El-Hakim Y, Mani KK, Eldouh A, Pandey S, Grimaldo MT, Dabney A, Pilla R, Sohrabji F (2021) Sex differences in stroke outcome correspond to rapid and severe changes in gut permeability in adult Sprague-Dawley rats. Biol Sex Differ 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ahnstedt H, Patrizz A, Chauhan A, Roy-O’Reilly M, Furr JW, Spychala MS, D’Aigle J, Blixt FW, Zhu L, Bravo Alegria J, McCullough LD (2020) Sex differences in T cell immune responses, gut permeability and outcome after ischemic stroke in aged mice. Brain Behav Immun 87:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Korf JM, Ganesh BP, McCullough LD (2022) Gut dysbiosis and age-related neurological diseases in females. Neurobiol Dis 168:105695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, Sun Y, Severe N, Dutta P, Scharff J, Scadden DT, Weissleder R, Swirski FK, Moskowitz MA, Nahrendorf M (2015) Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res 116:407–417

    Article  CAS  PubMed  Google Scholar 

  83. De Meyer SF, Denorme F, Langhauser F, Geuss E, Fluri F, Kleinschnitz C (2016) Thromboinflammation in Stroke Brain Damage. Stroke 47:1165–1172

    Article  PubMed  Google Scholar 

  84. De Meyer SF, Langhauser F, Haupeltshofer S, Kleinschnitz C, Casas AI (2022) Thromboinflammation in brain ischemia: recent updates and future perspectives. Stroke 53:1487–1499

    Article  PubMed  Google Scholar 

  85. Roy-O’Reilly M, McCullough LD (2014) Sex differences in stroke: the contribution of coagulation. Exp Neurol 259:16–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F (2018) Implication of the Kallikrein-Kinin system in neurological disorders: quest for potential biomarkers and mechanisms. Prog Neurobiol 165–167:26–50

    Article  PubMed  PubMed Central  Google Scholar 

  87. Davis CM, Fairbanks SL, Alkayed NJ (2013) Mechanism of the sex difference in endothelial dysfunction after stroke. Transl Stroke Res 4:381–389

    Article  PubMed  Google Scholar 

  88. Gupta NC, Davis CM, Nelson JW, Young JM, Alkayed NJ (2012) Soluble epoxide hydrolase: sex differences and role in endothelial cell survival. Arterioscler Thromb Vasc Biol 32:1936–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Emms H, Lewis GP (1985) Sex and hormonal influences on platelet sensitivity and coagulation in the rat. Br J Pharmacol 86:557–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jayachandran M, Owen WG, Miller VM (2003) Effects of ovariectomy on aggregation, secretion, and metalloproteinases in porcine platelets. Am J Physiol Heart Circ Physiol 284:H1679–H1685

    Article  CAS  PubMed  Google Scholar 

  91. Aldrighi JM, Oliveira RL, D’Amico E, Rocha T, Gebara OE, Rosano GM, Ramires JA (2005) Platelet activation status decreases after menopause. Gynecol Endocrinol 20:249–257

    Article  CAS  PubMed  Google Scholar 

  92. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16:626–638

    Article  CAS  PubMed  Google Scholar 

  93. Berghofer B, Frommer T, Haley G, Fink L, Bein G, Hackstein H (2006) TLR7 ligands induce higher IFN-alpha production in females. J Immunol 177:2088–2096

    Article  PubMed  Google Scholar 

  94. Marriott I, Bost KL, Huet-Hudson YM (2006) Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: a possible mechanism for gender-based differences in endotoxic shock susceptibility. J Reprod Immunol 71:12–27

    Article  CAS  PubMed  Google Scholar 

  95. Abdullah M, Chai PS, Chong MY, Tohit ER, Ramasamy R, Pei CP, Vidyadaran S (2012) Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol 272:214–219

    Article  CAS  PubMed  Google Scholar 

  96. Lee BW, Yap HK, Chew FT, Quah TC, Prabhakaran K, Chan GS, Wong SC, Seah CC (1996) Age- and sex-related changes in lymphocyte subpopulations of healthy Asian subjects: from birth to adulthood. Cytometry 26:8–15

    Article  CAS  PubMed  Google Scholar 

  97. Lisse IM, Aaby P, Whittle H, Jensen H, Engelmann M, Christensen LB (1997) T-lymphocyte subsets in West African children: impact of age, sex, and season. J Pediatr 130:77–85

    Article  CAS  PubMed  Google Scholar 

  98. Viscoli CM, Brass LM, Kernan WN, Sarrel PM, Suissa S, Horwitz RI (2001) A clinical trial of estrogen-replacement therapy after ischemic stroke. N Engl J Med 345:1243–1249

    Article  CAS  PubMed  Google Scholar 

  99. Wassertheil-Smoller S, Hendrix S, Limacher M, Heiss G, Kooperberg C, Baird A, Kotchen T, Curb JD, Black H, Rossouw JE, Aragaki A, Safford M, Stein E, Laowattana S, Mysiw WJ, Investigators ftW (2003) Effect of Estrogen plus progestin on stroke in postmenopausal women: the Women’s Health Initiative: a randomized trial. JAMA 289:2673–84

    Article  CAS  PubMed  Google Scholar 

  100. Anderson GL, Limacher M, Assaf AR, Bassford T, Beresford SA, Black H, Bonds D, Brunner R, Brzyski R, Caan B, Chlebowski R, Curb D, Gass M, Hays J, Heiss G, Hendrix S, Howard BV, Hsia J, Hubbell A, Jackson R, Johnson KC, Judd H, Kotchen JM, Kuller L, LaCroix AZ, Lane D, Langer RD, Lasser N, Lewis CE, Manson J, Margolis K, Ockene J, O’Sullivan MJ, Phillips L, Prentice RL, Ritenbaugh C, Robbins J, Rossouw JE, Sarto G, Stefanick ML, Van Horn L, Wactawski-Wende J, Wallace R, Wassertheil-Smoller S (2004) Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291:1701–1712

    Article  CAS  PubMed  Google Scholar 

  101. Hendrix SL, Wassertheil-Smoller S, Johnson KC, Howard BV, Kooperberg C, Rossouw JE, Trevisan M, Aragaki A, Baird AE, Bray PF, Buring JE, Criqui MH, Herrington D, Lynch JK, Rapp SR, Torner J (2006) Effects of conjugated equine estrogen on stroke in the Women’s Health Initiative. Circulation 113:2425–2434

    Article  CAS  PubMed  Google Scholar 

  102. Bhupathiraju SN, Grodstein F, Rosner BA, Stampfer MJ, Hu FB, Willett WC, Manson JE (2017) Hormone therapy use and risk of chronic disease in the nurses’ health study: a comparative analysis with the Women’s Health Initiative. Am J Epidemiol 186:696–708

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liu F, Benashski SE, Xu Y, Siegel M, McCullough LD (2012) Effects of chronic and acute oestrogen replacement therapy in aged animals after experimental stroke. J Neuroendocrinol 24:319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Suzuki S, Brown CM, Dela Cruz CD, Yang E, Bridwell DA, Wise PM (2007) Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc Natl Acad Sci U S A 104:6013–6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hodis HN, Mack WJ, Henderson VW, Shoupe D, Budoff MJ, Hwang-Levine J, Li Y, Feng M, Dustin L, Kono N, Stanczyk FZ, Selzer RH, Azen SP (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miller VM, Naftolin F, Asthana S, Black DM, Brinton EA, Budoff MJ, Cedars MI, Dowling NM, Gleason CE, Hodis HN, Jayachandran M, Kantarci K, Lobo RA, Manson JE, Pal L, Santoro NF, Taylor HS, Harman SM (2019) The Kronos Early Estrogen Prevention Study (KEEPS): what have we learned? Menopause 26:1071–1084

    Article  PubMed  PubMed Central  Google Scholar 

  107. Solar P, Zamani A, Lakatosova K, Joukal M (2022) The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 19:29

    Article  PubMed  PubMed Central  Google Scholar 

  108. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C (2022) Sex differences in the blood-brain barrier: implications for mental health. Front Neuroendocr 65:100989

    Article  CAS  Google Scholar 

  110. Weber CM, Clyne AM (2021) Sex differences in the blood-brain barrier and neurodegenerative diseases. APL Bioeng 5:011509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cipolla MJ, Godfrey JA, Wiegman MJ (2009) The effect of ovariectomy and estrogen on penetrating brain arterioles and blood-brain barrier permeability. Microcirculation 16:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tomas-Camardiel M, Venero JL, Herrera AJ, De Pablos RM, Pintor-Toro JA, Machado A, Cano J (2005) Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in perivascular and parenchymal astrocytes: protective effect by estradiol treatment in ovariectomized animals. J Neurosci Res 80:235–246

    Article  CAS  PubMed  Google Scholar 

  113. Atallah A, Mhaouty-Kodja S, Grange-Messent V (2017) Chronic depletion of gonadal testosterone leads to blood-brain barrier dysfunction and inflammation in male mice. J Cereb Blood Flow Metab 37:3161–3175

    Article  CAS  PubMed  Google Scholar 

  114. Liu F, Yuan R, Benashski SE, McCullough LD (2009) Changes in experimental stroke outcome across the life span. J Cereb Blood Flow Metab 29:792–802

    Article  CAS  PubMed  Google Scholar 

  115. Barr TL, Latour LL, Lee KY, Schaewe TJ, Luby M, Chang GS, El-Zammar Z, Alam S, Hallenbeck JM, Kidwell CS, Warach S (2010) Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke 41:e123–e128

    Article  CAS  PubMed  Google Scholar 

  116. Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J (2008) MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39:1121–1126

    Article  CAS  PubMed  Google Scholar 

  117. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  CAS  PubMed  Google Scholar 

  118. Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36:605–613

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61:24–36

    Article  PubMed  Google Scholar 

  120. Lenz KM, Nugent BM, Haliyur R, McCarthy MM (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci 33:2761–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Neumann H, Kotter M, Franklin RJB (2009) Debris clearance by microglia: an essential link between degeneration and regeneration 132:288–295

    CAS  Google Scholar 

  122. Kerr N, Dietrich DW, Bramlett HM, Raval AP (2019) Sexually dimorphic microglia and ischemic stroke. CNS Neurosci Ther 25:1308–1317

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mouton PR, Long JM, Lei DL, Howard V, Jucker M, Calhoun ME, Ingram DK (2002) Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 956:30–35

    Article  CAS  PubMed  Google Scholar 

  124. Bollinger JL, Bergeon Burns CM, Wellman CL (2016) Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav Immun 52:88–97

    Article  CAS  PubMed  Google Scholar 

  125. Guneykaya D, Ivanov A, Hernandez DP, Haage V, Wojtas B, Meyer N, Maricos M, Jordan P, Buonfiglioli A, Gielniewski B, Ochocka N, Comert C, Friedrich C, Artiles LS, Kaminska B, Mertins P, Beule D, Kettenmann H, Wolf SA (2018) Transcriptional and translational differences of microglia from male and female brains. Cell Rep 24(2773–83):e6

    Google Scholar 

  126. Schwarz JM, Sholar PW, Bilbo SD (2012) Sex differences in microglial colonization of the developing rat brain. J Neurochem 120:948–963

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Simoes-Henriques C, Mateus-Pinheiro M, Gaspar R, Pinheiro H, Mendes Duarte J, Baptista FI, Canas PM, Fontes-Ribeiro CA, Cunha RA, Ambrosio AF, Gomes CA (2020) Microglia cytoarchitecture in the brain of adenosine A2A receptor knockout mice: brain region and sex specificities. Eur J Neurosci 51:1377–1387

    Article  PubMed  Google Scholar 

  128. Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, Lolli F, Marcello E, Sironi L, Vegeto E, Maggi A (2018) Sex-specific features of microglia from adult mice. Cell Rep 23:3501–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mangold CA, Wronowski B, Du M, Masser DR, Hadad N, Bixler GV, Brucklacher RM, Ford MM, Sonntag WE, Freeman WM (2017) Sexually divergent induction of microglial-associated neuroinflammation with hippocampal aging. J Neuroinflammation 14:141

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, Sens JP, Kocher JP, Petrucelli L, Fryer JD (2018) Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med 215:2235–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xiong X, Xu L, Wei L, White RE, Ouyang YB, Giffard RG (2015) IL-4 is required for sex differences in vulnerability to focal ischemia in mice. Stroke 46:2271–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Eldahshan W, Fagan SC, Ergul A (2019) Inflammation within the neurovascular unit: focus on microglia for stroke injury and recovery. Pharmacol Res 147:104349

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ma L, Sun P, Zhang JC, Zhang Q, Yao SL (2017) Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int J Mol Med 40:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, Blecher R, Ulas T, Squarzoni P, Hoeffel G, Coulpier F, Siopi E, David FS, Scholz C, Shihui F, Lum J, Amoyo AA, Larbi A, Poidinger M, Buttgereit A, Lledo PM, Greter M, Chan JKY, Amit I, Beyer M, Schultze JL, Schlitzer A, Pettersson S, Ginhoux F, Garel S (2018) Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172(500–16):e16

    Google Scholar 

  135. Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 91:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Won S, Lee JK, Stein DG (2015) Recombinant tissue plasminogen activator promotes, and progesterone attenuates, microglia/macrophage M1 polarization and recruitment of microglia after MCAO stroke in rats. Brain Behav Immun 49:267–279

    Article  CAS  PubMed  Google Scholar 

  137. Peeters SB, Cotton AM, Brown CJ (2014) Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. BioEssays 36:746–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Arnold AP, Chen X (2009) What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol 30:1–9

    Article  PubMed  Google Scholar 

  139. Manwani B, Bentivegna K, Benashski SE, Venna VR, Xu Y, Arnold AP, McCullough LD (2015) Sex differences in ischemic stroke sensitivity are influenced by gonadal hormones, not by sex chromosome complement. J Cereb Blood Flow Metab 35:221–229

    Article  CAS  PubMed  Google Scholar 

  140. McCullough LD, Mirza MA, Xu Y, Bentivegna K, Steffens EB, Ritzel R, Liu F (2016) Stroke sensitivity in the aged: sex chromosome complement vs. gonadal hormones. Aging (Albany NY) 8:1432–1441

    Article  CAS  PubMed  Google Scholar 

  141. Qi S, Al Mamun A, Ngwa C, Romana S, Ritzel R, Arnold AP, McCullough LD, Liu F (2021) X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals. J Neuroinflammation 18:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chisholm NC (2016) Sohrabji FJNod. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging 85:245–253

    CAS  Google Scholar 

  144. Tang T, Hu L, Liu Y, Fu X, Li J, Yan F, Cao S, Chen G (2022) Sex-associated differences in neurovascular dysfunction during ischemic stroke. Front Mol Neurosci 15:860959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rurak GM, Simard S, Freitas-Andrade M, Lacoste B, Charih F, Van Geel A, Stead J, Woodside B, Green JR, Coppola G, Salmaso N (2022) Sex differences in developmental patterns of neocortical astroglia: a mouse translatome database. Cell Rep 38:110310

    Article  CAS  PubMed  Google Scholar 

  146. Zheng W, Talley Watts L, Holstein DM, Wewer J, Lechleiter JD (2013) P2Y1R-initiated, IP3R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse. J Cereb Blood Flow Metab 33:600–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Morrison HW, Filosa JA (2016) Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice. Neuroscience 339:85–99

    Article  CAS  PubMed  Google Scholar 

  148. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guo H, Yang J, Liu M, Wang L, Hou W, Zhang L, Ma Y (2020) Selective activation of estrogen receptor beta alleviates cerebral ischemia neuroinflammatory injury. Brain Res 1726:146536

    Article  CAS  PubMed  Google Scholar 

  150. Guo J, Duckles SP, Weiss JH, Li X, Krause DN (2012) 17beta-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-glucose deprivation/reperfusion. Free Radic Biol Med 52:2151–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pawlak J, Brito V, Kuppers E, Beyer C (2005) Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res 138:1–7

    Article  CAS  PubMed  Google Scholar 

  152. Gal-Oz ST, Maier B, Yoshida H, Seddu K, Elbaz N, Czysz C, Zuk O, Stranger BE, Ner-Gaon H, Shay T (2019) ImmGen report: sexual dimorphism in the immune system transcriptome. Nat Commun 10:4295

    Article  PubMed  PubMed Central  Google Scholar 

  153. So J, Tai AK, Lichtenstein AH, Wu D, Lamon-Fava S (2021) Sexual dimorphism of monocyte transcriptome in individuals with chronic low-grade inflammation. Biol Sex Differ 12:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bongen E, Lucian H, Khatri A, Fragiadakis GK, Bjornson ZB, Nolan GP, Utz PJ, Khatri P (2019) Sex differences in the blood transcriptome identify robust changes in immune cell proportions with aging and influenza infection. Cell Rep 29:1961–73.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Miró-Mur F, Pérez-de-Puig I, Ferrer-Ferrer M, Urra X, Justicia C, Chamorro A, Planas AM (2016) Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav Immun 53:18–33

    Article  PubMed  Google Scholar 

  156. Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B (2008) Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 5:46

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gupta S, Nakabo S, Blanco LP, O’Neil LJ, Wigerblad G, Goel RR, Mistry P, Jiang K, Carmona-Rivera C, Chan DW, Wang X, Pedersen HL, Gadkari M, Howe KN, Naz F, Dell’Orso S, Hasni SA, Dempsey C, Buscetta A, Frischmeyer-Guerrerio PA, Kruszka P, Muenke M, Franco LM, Sun HW, Kaplan MJ (2020) Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proc Natl Acad Sci U S A 117:16481–16491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Blazkova J, Gupta S, Liu Y, Gaudilliere B, Ganio EA, Bolen CR, Saar-Dover R, Fragiadakis GK, Angst MS, Hasni S, Aghaeepour N, Stevenson D, Baldwin N, Anguiano E, Chaussabel D, Altman MC, Kaplan MJ, Davis MM, Furman D (2017) Multicenter systems analysis of human blood reveals immature neutrophils in males and during pregnancy. J Immunol 198:2479–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim JY, Park J, Chang JY, Kim SH, Lee JE (2016) Inflammation after ischemic stroke: the role of leukocytes and glial cells. Exp Neurobiol 25:241–251

    Article  PubMed  PubMed Central  Google Scholar 

  160. Perez-de-Puig I, Miro-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A, Planas AM (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 129:239–257

    Article  CAS  PubMed  Google Scholar 

  161. Herisson F, Frodermann V, Courties G, Rohde D, Sun Y, Vandoorne K, Wojtkiewicz GR, Masson GS, Vinegoni C, Kim J, Kim DE, Weissleder R, Swirski FK, Moskowitz MA, Nahrendorf M (2018) Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci 21:1209–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR (2015) Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 35:888–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Miller AP, Feng W, Xing D, Weathington NM, Blalock JE, Chen YF, Oparil S (2004) Estrogen modulates inflammatory mediator expression and neutrophil chemotaxis in injured arteries. Circulation 110:1664–1669

    Article  CAS  PubMed  Google Scholar 

  164. Ahnstedt H, Patrizz A, Roy-O’Reilly M, Spychala M, Bravo Alegria J, Chauhan A, McCullough LD (2018) Abstract TMP36: sex differences in neutrophil-T cell Immune responses and outcome after ischemic stroke in aged mice. Stroke 49. https://doi.org/10.1161/str.49.suppl_1.TMP36

  165. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  166. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, Cao Y, Xu H, Luo H, Lu L, Shi MJ, Tian Y, Fan W, Zhao BQ (2020) Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun 11:2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18:134–147

    Article  CAS  PubMed  Google Scholar 

  168. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107:15880–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Novotny J, Oberdieck P, Titova A, Pelisek J, Chandraratne S, Nicol P, Hapfelmeier A, Joner M, Maegdefessel L, Poppert H, Pircher J, Massberg S, Friedrich B, Zimmer C, Schulz C, Boeckh-Behrens T (2020) Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology 94:e2346–e2360

    Article  CAS  PubMed  Google Scholar 

  170. Ducroux C, Di Meglio L, Loyau S, Delbosc S, Boisseau W, Deschildre C, Ben Maacha M, Blanc R, Redjem H, Ciccio G, Smajda S, Fahed R, Michel JB, Piotin M, Salomon L, Mazighi M, Ho-Tin-Noe B, Desilles JP (2018) Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke 49:754–757

    Article  PubMed  Google Scholar 

  171. Valles J, Lago A, Santos MT, Latorre AM, Tembl JI, Salom JB, Nieves C, Moscardo A (2017) Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost 117:1919–1929

    Article  PubMed  Google Scholar 

  172. Strecker JK, Schmidt A, Schabitz WR, Minnerup J (2017) Neutrophil granulocytes in cerebral ischemia - evolution from killers to key players. Neurochem Int 107:117–126

    Article  CAS  PubMed  Google Scholar 

  173. Tillack K, Breiden P, Martin R, Sospedra M (2012) T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J Immunol 188:3150–3159

    Article  CAS  PubMed  Google Scholar 

  174. Giaglis S, Stoikou M, Sur Chowdhury C, Schaefer G, Grimolizzi F, Rossi SW, Hoesli IM, Lapaire O, Hasler P, Hahn S (2016) Multimodal regulation of NET formation in pregnancy: progesterone antagonizes the Pro-NETotic effect of estrogen and G-CSF. Front Immunol 7:565

    Article  PubMed  PubMed Central  Google Scholar 

  175. Giaglis S, Stoikou M, Sur Chowdhury C, Schaefer G, Grimolizzi F, Rossi SW, Hoesli IM, Lapaire O, Hasler P, Hahn S (2016) Multimodal regulation of NET formation in pregnancy: progesterone antagonizes the Pro-NETotic effect of estrogen and G-CSF. Front Immunol 7:565

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yuan XZ (2018) Sex differences in neutrophil extracellular trap formation. https://tspace.library.utoronto.ca/handle/1807/91738. Accessed 15 Jul 2022

  177. Denorme F, Portier I, Rustad JL, Cody MJ, de Araujo CV, Hoki C, Alexander MD, Grandhi R, Dyer MR, Neal MD, Majersik JJ, Yost CC, Campbell RA (2022) Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest 132:e154225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Uppal SS, Verma S, Dhot PS (2003) Normal values of CD4 and CD8 lymphocyte subsets in healthy indian adults and the effects of sex, age, ethnicity, and smoking. Cytometry B Clin Cytom 52:32–36

    Article  CAS  PubMed  Google Scholar 

  179. Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, Offner H (2004) Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J Immunol 173:2227–2230

    Article  CAS  PubMed  Google Scholar 

  180. Libert C, Dejager L, Pinheiro I (2010) The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 10:594–604

    Article  CAS  PubMed  Google Scholar 

  181. Hirokawa K, Utsuyama M, Hayashi Y, Kitagawa M, Makinodan T, Fulop T (2013) Slower immune system aging in women versus men in the Japanese population. Immun Ageing 10:19

    Article  PubMed  PubMed Central  Google Scholar 

  182. Ahnstedt H, McCullough LD (2019) The impact of sex and age on T cell immunity and ischemic stroke outcomes. Cell Immunol 345:103960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Conway SE, Roy-O’Reilly M, Friedler B, Staff I, Fortunato G, McCullough LD (2015) Sex differences and the role of IL-10 in ischemic stroke recovery. Biol Sex Differ 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  184. Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, Guida E, Broughton BR, Drummond GR, Sobey CG (2010) Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 30:1306–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Luo CY, Wang L, Sun C, Li DJ (2011) Estrogen enhances the functions of CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol Immunol 8:50–58

    Article  CAS  PubMed  Google Scholar 

  186. Yan J, Read SJ, Henderson RD, Hull R, O’Sullivan JD, McCombe PA, Greer JM (2012) Frequency and function of regulatory T cells after ischaemic stroke in humans. J Neuroimmunol 243:89–94

    Article  CAS  PubMed  Google Scholar 

  187. Beckmann L, Obst S, Labusek N, Abberger H, Koster C, Klein-Hitpass L, Schumann S, Kleinschnitz C, Hermann DM, Felderhoff-Muser U, Bendix I, Hansen W, Herz J (2022) Regulatory T cells contribute to sexual dimorphism in neonatal hypoxic-ischemic brain injury. Stroke 53:381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tian Y, Stamova B, Jickling GC, Liu D, Ander BP, Bushnell C, Zhan X, Davis RR, Verro P, Pevec WC, Hedayati N, Dawson DL, Khoury J, Jauch EC, Pancioli A, Broderick JP, Sharp FR (2012) Effects of gender on gene expression in the blood of ischemic stroke patients. J Cereb Blood Flow Metab 32:780–791

    Article  CAS  PubMed  Google Scholar 

  189. Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, Sangster MY, Vignali DA, Doherty PC, Grosveld GC, Ihle JN (1996) Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382:171–174

    Article  CAS  PubMed  Google Scholar 

  190. Phan HT, Blizzard CL, Reeves MJ, Thrift AG, Cadilhac DA, Sturm J, Heeley E, Otahal P, Rothwell P, Anderson CS, Parmar P, Krishnamurthi R, Barker-Collo S, Feigin V, Gall S (2019) Sex differences in long-term quality of life among survivors after stroke in the INSTRUCT. Stroke 50:2299–2306

    Article  PubMed  Google Scholar 

  191. Bodhankar S, Lapato A, Chen Y, Vandenbark AA, Saugstad JA, Offner H (2015) Role for microglia in sex differences after ischemic stroke: importance of M2. Metab Brain Dis 30:1515–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Friberg L, Rosenqvist M, Lip GYH (2012) Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. Eur Heart J 33:1500–1510

    Article  PubMed  Google Scholar 

  193. Manwani B, Liu F, Scranton V, Hammond MD, Sansing LH, McCullough LD (2013) Differential effects of aging and sex on stroke induced inflammation across the lifespan. Exp Neurol 249:120–131

    Article  PubMed  Google Scholar 

  194. Villapol S, Faivre V, Joshi P, Moretti R, Besson VC, Charriaut-Marlangue C (2019) Early sex differences in the immune-inflammatory responses to neonatal ischemic stroke. Int J Mol Sci 20:3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Cordeau P Jr, Lalancette-Hebert M, Weng YC, Kriz J (2008) Live imaging of neuroinflammation reveals sex and estrogen effects on astrocyte response to ischemic injury. Stroke 39:935–942

    Article  CAS  PubMed  Google Scholar 

  196. Jackson L, Li W, Abdul Y, Dong G, Baban B, Ergul A (2019) Diabetic stroke promotes a sexually dimorphic expansion of T cells. Neuromolecular Med 21:445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Stamova B, Jickling GC, Ander BP, Zhan X, Liu D, Turner R, Ho C, Khoury JC, Bushnell C, Pancioli A, Jauch EC, Broderick JP, Sharp FR (2014) Gene expression in peripheral immune cells following cardioembolic stroke is sexually dimorphic. PLoS ONE 9:e102550

    Article  PubMed  PubMed Central  Google Scholar 

  198. Xu H, Ge Y, Liu Y, Zheng Y, Hu R, Ren C, Liu QJISB (2022) Identification of the key genes and immune infiltrating cells determined by sex differences in ischaemic stroke through co-expression network module 16:28–41

    Google Scholar 

  199. Ross AM, Lee CS, Lutsep H (2016) Influence of gender and age on the peripheral immune response in stroke. J Cardiovasc Nurs 31:331–335

    Article  PubMed  Google Scholar 

  200. Zhu W, Nan Y, Wang S, Liu W (2019) Bioinformatics analysis of gene expression profiles of sex differences in ischemic stroke. Biomed Res Int 2019:2478453

    Article  PubMed  PubMed Central  Google Scholar 

  201. Trott S, Vsevolozhskaya O, Pennypacker K, Alhajeri A, Fraser JF (2019) Immune system activation in perioperative thrombectomy patients: preliminary retrospective study. World Neurosurg 128:e966–e969

    Article  PubMed  Google Scholar 

  202. Stamova B, Tian Y, Jickling G, Bushnell C, Zhan X, Liu D, Ander BP, Verro P, Patel V, Pevec WC, Hedayati N, Dawson DL, Jauch EC, Pancioli A, Broderick JP, Sharp FR (2012) The X-chromosome has a different pattern of gene expression in women compared with men with ischemic stroke. Stroke 43:326–334

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) NS08779, NS103592, and NS096493 (to Dr. McCullough).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise D. McCullough.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Immunopathology of Stroke - Guest Editors: Arthur Liesz & Tim Magnus

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, M.B., Lee, J. & McCullough, L.D. Sex differences in the inflammatory response to stroke. Semin Immunopathol 45, 295–313 (2023). https://doi.org/10.1007/s00281-022-00969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00969-x

Keywords

Navigation