Skip to main content

Advertisement

Log in

Role of alarmins in poststroke inflammation and neuronal repair

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Severe loss of cerebral blood flow causes hypoxia and glucose deprivation in the brain tissue, resulting in necrotic cell death in the ischemic brain. Several endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), are extracellularly released from the dead cells to activate pattern recognition receptors (PRRs) in immune cells that infiltrate into ischemic brain tissue following the disruption of the blood–brain barrier (BBB) after stroke onset. The activated immune cells produce various inflammatory cytokines and chemokines, triggering sterile cerebral inflammation in the ischemic brain that causes further neuronal cell death. Poststroke inflammation is resolved within several days after stroke onset, and neurological functions are restored to some extent as neural repair occurs around peri-infarct neurons. Clearance of DAMPs from the injured brain is necessary for the resolution of poststroke inflammation. Neurons and glial cells also express PRRs and receive DAMP signaling. Although the role of PRRs in neural cells in the ischemic brain has not yet been clarified, the signaling pathway is likely to be contribute to stroke pathology and neural repair after ischemic stroke. This review describes the molecular dynamics, signaling pathways, and functions of DAMPs in poststroke inflammation and its resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19(1):24–32. https://doi.org/10.1016/j.smim.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (2020) The top 10 cause of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

  3. Dreier JP, Reiffurth C (2015) The stroke-migraine depolarization continuum. Neuron 86(4):902–922. https://doi.org/10.1016/j.neuron.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  4. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188. https://doi.org/10.1016/j.pneurobio.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  5. Yang JL, Mukda S, Chen SD (2018) Diverse roles of mitochondria in ischemic stroke. Redox Biol 16:263–275. https://doi.org/10.1016/j.redox.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neumann J et al (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129(2):259–277. https://doi.org/10.1007/s00401-014-1355-2

    Article  CAS  PubMed  Google Scholar 

  7. Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17(4):359–365. https://doi.org/10.1016/j.coi.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  8. Harris HE, Raucci A (2006) Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep 7(8):774–778. https://doi.org/10.1038/sj.embor.7400759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang D, Han Z, Oppenheim JJ (2017) Alarmins and immunity. Immunol Rev 280(1):41–56. https://doi.org/10.1111/imr.12577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim JB et al (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26(24):6413–6421. https://doi.org/10.1523/JNEUROSCI.3815-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28(5):927–938. https://doi.org/10.1038/sj.jcbfm.9600582

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J et al (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42(5):1420–1428. https://doi.org/10.1161/STROKEAHA

    Article  CAS  PubMed  Google Scholar 

  13. Yang QW et al (2011) HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling. J Cereb Blood Flow Metab 31(2):593–605. https://doi.org/10.1038/jcbfm.2010.129

    Article  CAS  PubMed  Google Scholar 

  14. Yanai et al (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462(7269):99–103. https://doi.org/10.1038/nature08512

    Article  CAS  PubMed  Google Scholar 

  15. Xiong XX, Gu LJ, Shen J, Kang XH, Zheng YY, Yue SB, Zhu SM (2014) Probenecid protects against transient focal cerebral ischemic injury by inhibiting HMGB1 release and attenuating AQP4 expression in mice. Neurochem Res 39(1):216–224. https://doi.org/10.1007/s11064-013-1212-z

    Article  CAS  PubMed  Google Scholar 

  16. Goldstein RS et al (2006) Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 25(6):571–574. https://doi.org/10.1097/01.shk.0000209540.99176.72

    Article  CAS  PubMed  Google Scholar 

  17. Huang JM, Hu J, Ning C, Hu ML (2013) Relationship between plasma high-mobility group box-1 levels and clinical outcomes of ischemic stroke. J Crit Care 28(5):792–797. https://doi.org/10.1016/j.jcrc.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  18. Schulze J, Zierath D, Tanzi P, Cain K, Shibata D, Dressel A, Becker K (2013) Severe stroke induces long-lasting alterations of high-mobility group box 1. Stroke 44(1):246–248. https://doi.org/10.1161/STROKEAHA.112.676072

    Article  CAS  PubMed  Google Scholar 

  19. Sapojnikova N, Kartvelishvili T, Asatiani N, Zinkevich V, Kalandadze I, Gugutsidze D, Shakarishvili R (1842) Tsiskaridze A (2014) Correlation between MMP-9 and extracellular cytokine HMGB1 in prediction of human ischemic stroke outcome. Biochim Biophys Acta 9:1379–1384. https://doi.org/10.1016/j.bbadis.2014.04.031

    Article  CAS  Google Scholar 

  20. Wang J, Jiang Y, Zeng D, Zhou W, Hong X (2020) Prognostic value of plasma HMGB1 in ischemic stroke patients with cerebral ischemia-reperfusion injury after intravenous thrombolysis. J Stroke Cerebrovasc Dis 29(9):105055. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105055

    Article  PubMed  Google Scholar 

  21. Rashidian J et al (2009) Essential role of cytoplasmic cdk5 and Prx2 in multiple ischemic injury models, in vivo. J Neurosci 29(40):12497–12505. https://doi.org/10.1523/JNEUROSCI.3892-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shichita T et al (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18(6):911–917. https://doi.org/10.1038/nm.2749

    Article  CAS  PubMed  Google Scholar 

  23. Kuang X (2014) Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: involvement of inhibition of TLR4/peroxiredoxin 6 signaling. Free Radic Biol Med 71:165–175. https://doi.org/10.1016/j.freeradbiomed.2014.03.028

    Article  CAS  PubMed  Google Scholar 

  24. Nakamura K et al (2021) Extracellular DJ-1 induces sterile inflammation in the ischemic brain. PLoS Biol 19(5):e3000939. https://doi.org/10.1371/journal.pbio.3000939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) HumanTH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175. https://doi.org/10.1038/nm1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richard S, Lapierre V, Girerd N, Bonnerot M, Burkhard PR, Lagerstedt L, Bracard S, Debouverie M, Turck N, Sanchez JC (2016) Diagnostic performance of peroxiredoxin 1 to determine time- of-onset of acute cerebral infarction. Sci Rep 6:38300. https://doi.org/10.1038/srep38300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsai SY, Segovia JA, Chang TH, Morris IR, Berton MT, Tessier PA, Tardif MR, Cesaro A, Bose S (2014) DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation dur- ing influenza a virus infection: role of DDX21-TRIF-TLR4- MyD88 pathway. PLoS Pathog 10(1):e1003848. https://doi.org/10.1371/journal.ppat.1003848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loser K et al (2010) The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the develop- ment of autoreactive CD8+ T cells. Nat Med 16(6):713–717. https://doi.org/10.1038/nm.2150

    Article  CAS  PubMed  Google Scholar 

  29. Vogl T et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–1049. https://doi.org/10.1038/nm1638

    Article  CAS  PubMed  Google Scholar 

  30. Qiang X et al (2013) Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med 19(11):1489–1495. https://doi.org/10.1038/nm.3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrançois L, Li Z (2007) Heat shock protein gp96 is a master chaperone for Toll-like receptors and is important in the innate function of macrophages. Immunity 26(2):215–226. https://doi.org/10.1016/j.immuni.2006.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ekaney ML et al (2014) Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care 18(5):543. https://doi.org/10.1186/s13054-014-0543-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. https://doi.org/10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Q, RaoofM CY, Sumi Y, Sursal T, JungerW BK, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107. https://doi.org/10.1038/nature08780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oka T et al (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251–255. https://doi.org/10.1038/nature10992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walko TD 3rd, Bola RA, Hong JD, Au AK, Bell MJ, Kochanek PM, Clark RS, Aneja RK (2014) Cerebrospinal fluid mitochon- drial DNA: a novel DAMP in pediatric traumatic brain injury. Shock 41(6):499–503. https://doi.org/10.1097/SHK.0000000000000160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hyakkoku K et al (2010) Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171(1):258–267. https://doi.org/10.1016/j.neuroscience.2010.08.054

    Article  CAS  PubMed  Google Scholar 

  38. Brea D, Sobrino T, Rodríguez-Yáñez M, Ramos-Cabrer P, Agulla J, Rodríguez-González R, Campos F, Blanco M, Castillo J (2011) Toll- like receptors 7 and 8 expression is associated with poor outcome and greater inflammatory response in acute ischemic stroke. Clin Immunol 139(2):193–198. https://doi.org/10.1016/j.clim.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  39. Gao D, Wu J, Wu Y-T, Du F, Aroh C, Yan N, Sun L, Chen ZJ (2013) Cyclic GMP- AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906. https://doi.org/10.1126/science.1240933

    Article  CAS  PubMed  Google Scholar 

  40. Cai X, Chiu Y-H, Chen ZJ (2014) The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 54(2):289–296. https://doi.org/10.1016/j.molcel.2014.03.040

    Article  CAS  PubMed  Google Scholar 

  41. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 17(10):1142–1149. https://doi.org/10.1038/ni.3558

    Article  CAS  PubMed  Google Scholar 

  42. Xia P, Wang S, Gao P, Gao G, Fan Z (2016) DNA sensor cGAS-mediated immune recognition. Protein Cell 7(11):777–791. https://doi.org/10.1007/s13238-016-0320-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. AblasserA S-B, HemmerlingI HGL, Schmidt T, Latz E, Hornung V (2013) Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503(7477):530–534. https://doi.org/10.1038/nature12640

    Article  CAS  Google Scholar 

  44. Li Q, Cao Y, Dang C, Han B, Han R, Ma H, Hao J, Wang L (2020) Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol Med 12(4):e11002. https://doi.org/10.15252/emmm.201911002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S (2007) Involvement of P2X4 and P2Y12 receptors in ATP- induced microglial chemotaxis. Glia 55(6):604–616. https://doi.org/10.1002/glia.20489

    Article  PubMed  Google Scholar 

  46. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. https://doi.org/10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  47. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing ofproIL- β. Mol Cell 10(2):417–426. https://doi.org/10.1016/S1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  48. Verma R, Cronin CG, Hudobenko J, Venna VR, McCullough LD, Liang BT (2017) Deletion ofthe P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun 66:302–312. https://doi.org/10.1016/j.bbi.2017.07.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Webster CM, Hokari M, McManus A, Tang XN, Ma H, Kacimi R, Yenari MA (2013) Microglial P2Y12 deficiency/inhibition protects against brain ischemia. PLoS ONE 8(8):e70927. https://doi.org/10.1371/journal.pone.0070927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stewart CR et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–161. https://doi.org/10.1038/ni.1836

    Article  CAS  PubMed  Google Scholar 

  51. Uchida K (2013) Redox-derived damage-associated molecular patterns: ligand function of lipid peroxidation adducts. Redox Biol 1(1):94–96. https://doi.org/10.1016/j.redox.2012.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao S, Zhang R, Greenberg ME, Sun M, Chen X, Levison BS, Salomon RG, Hazen SL (2006) Phospholipid hydroxyalkenals, a subset of recently discovered endogenous CD36 ligands, spontaneously generate novel furan-containing phospholipids lacking CD36 binding activity in vivo. J Biol Chem 281(42):31298–31308. https://doi.org/10.1074/jbc.M604039200

    Article  CAS  PubMed  Google Scholar 

  53. Haider L, Fischer MT, Frishcer JM, Bauer J, Höftberger R, Botond G, Esterbauer H, Binder CJ, Witztum JL, Lassmann H (2011) Oxidative damage in multiple sclerosis lesions. Brain 134(Pt 7):1914–1924. https://doi.org/10.1093/brain/awr12

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ho PP et al (2012) Identification of naturally occurring fatty acids of the myelin sheath that resolve neuroinflammation. Sci Transl Med 4(137):137ra73. https://doi.org/10.1126/scitranslmed.3003831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miller YI et al (2011) Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 108(2):235–248. https://doi.org/10.1161/CIRCRESAHA.110.223875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matt U et al (2013) WAVE1 mediates suppression of phagocytosis by phospholipid-derived DAMPs. J Clin Invest 123(7):3014–3024. https://doi.org/10.1172/JCI60681

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cho S, Park EM, Febbraio M, Anrather J, Park L, Racchumi G, Silverstein R, Iadecola C (2005) The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J Neurosci 25(10):2504–2512. https://doi.org/10.1523/JNEUROSCI.0035-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, Zhou P, Iadecola C (2010) Key role of CD36 in Toll-like receptor 2 signaling in cerebral ischemia. Stroke 41(5):898–904. https://doi.org/10.1161/STROKEAHA.109.572552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318):972–976. https://doi.org/10.1038/nature09421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clemens JA, Stephenson DT, Smalstig EB, Roberts EF, Johnstone EM, Sharp JD, Little SP, Kramer RL (1996) Reactive glia express cytosolic phospholipase A2 after transient global forebrain ischemia in the rat. Stroke 27(3):527–535. https://doi.org/10.1161/01.STR.27.3.527

    Article  CAS  PubMed  Google Scholar 

  61. Bonventre JV, Huang Z, Taheri MR, O’Leary E, Li E, Moskowitz MA, Sapirstein A (1997) Reduced fertility and post ischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390(6660):622–625. https://doi.org/10.1038/37635

    Article  CAS  PubMed  Google Scholar 

  62. Muralikrishna Adibhatla R, Hatcher JF (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free RadicvBiol Med 40(3):376–387. https://doi.org/10.1016/j.freeradbiomed.2005.08.044

    Article  CAS  Google Scholar 

  63. Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP (2013) The resolution of inflammation. Nat Rev Immunol 13(1):59–66. https://doi.org/10.1038/nri3362

    Article  CAS  PubMed  Google Scholar 

  64. Zera KA, Buckwalter M (2020) The local and peripheral immune responses to stroke: implications for therapeutic development. Neurotherapeutics 17(2):414–435. https://doi.org/10.1007/s13311-020-00844-3

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yu H, Cai Y, Zhong A, Zhang Y, Zhang J, Xu S (2021) The “dialogue” between central and peripheral immunity after ischemic stroke: focus on spleen. Front Immunol 12:792522. https://doi.org/10.3389/fimmu.2021.792522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu F, Cheng X, Zhong S, Liu C, Jolkkonen J, Zhang X, Liang Y, Liu Z, Zhao C (2020) Communications between peripheral and the brain-resident immune system in neuronal regeneration after stroke. Front Immnol 11:1931. https://doi.org/10.3389/fimmu.2020.01931

    Article  CAS  Google Scholar 

  67. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extra- cellular traps kill bacteria. Science 303(5663):1532–1535. https://doi.org/10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  68. Parker H, Albrett AM, Kettle AJ, Winterbourn CC (2012) Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence ofhydrogen peroxide. J Leukoc Biol 91(3):369–376. https://doi.org/10.1189/jlb.0711387

    Article  CAS  PubMed  Google Scholar 

  69. Wu X, Zeng H, Cai L, Chen G (2021) Role of the extracellular traps in central nervous system. Front Immunol 12:783882. https://doi.org/10.3389/fimmu.2021.783882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A, Planas AM (2015) Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 129(2):239–257. https://doi.org/10.1007/s00401-014-1381-0

    Article  CAS  PubMed  Google Scholar 

  71. Jorch SK, Kubes P (2017) An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 23(3):279–287. https://doi.org/10.1038/nm.4294

    Article  CAS  PubMed  Google Scholar 

  72. Wang R et al (2021) Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 138(1):91–103. https://doi.org/10.1182/blood.2020008913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Laridan E, Denorme F, Desender L, Francois O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82(2):223–232. https://doi.org/10.1002/ana.24993

    Article  CAS  PubMed  Google Scholar 

  74. Pertiwi KR, de Boer OJ, Mackaaij C, Pabittei DR, de Winter RJ, Li X, van der Wal AC (2019) Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis. J Pathol 247(4):505–512. https://doi.org/10.1002/path.5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397. https://doi.org/10.1016/S0166-2236(99)01401-0

    Article  CAS  PubMed  Google Scholar 

  76. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808. https://doi.org/10.1038/nm.2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cyto- kines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–2169. https://doi.org/10.1038/jcbfm.2012.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wattananit S et al (2016) Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci 36(15):4182–4195. https://doi.org/10.1523/JNEUROSCI.4317-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shichita T et al (2009) Pivotal role of cerebral interleukin-17- producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950. https://doi.org/10.1038/nm.1999

    Article  CAS  PubMed  Google Scholar 

  80. Smirkin A et al (2010) Iba1+/NG2+ macrophage-like cells expressing a variety of neuroprotective factors ameliorate ischemic damage of the brain. J Cereb Blood Flow Metab 30(3):603–615. https://doi.org/10.1038/jcbfm.2009.233

    Article  CAS  PubMed  Google Scholar 

  81. Shichita T et al (2017) MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat Med 23(6):723–732. https://doi.org/10.1038/nm.4312

    Article  CAS  PubMed  Google Scholar 

  82. Iliff JJ et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med 4(147):147ra111. https://doi.org/10.1126/scitranslmed.3003748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A, Hawkes CA, Carare RO (2018) Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol 136(1):136–152. https://doi.org/10.1007/s00401-018-1862-7

    Article  CAS  Google Scholar 

  84. Lv T, Zhao B, Hu Q, Zhang X (2021) The glymphatic system: a novel therapeutic target for stroke treatment. Front Aging Neurosci 13:689098. https://doi.org/10.3389/fnagi.2021.689098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J (2015) The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85(4):703–709. https://doi.org/10.1016/j.neuron.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  86. Pomeshchik Y, KidinI KP, Savchenko E, Jaronen M, Lehtonen S, Wojciechowski S, Kanninen K, Koistinaho J, Malm T (2015) Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav Immun 44:68–81. https://doi.org/10.1016/j.bbi.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  87. Luo Y, Zhou Y, Xiao W, Liang Z, Dai J, Weng X, Wu X (2015) Interleukin-33 ameliorates ischemic brain injury in experimental stroke through promoting Th2 response and suppressing Th17 response. Brain Res 1597:86–94. https://doi.org/10.1016/j.brainres.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  88. Fu AKY et al (2016) IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci U S A 113(19):E2705-2713. https://doi.org/10.1073/pnas.1604032113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luheshi NM, Kovács KJ, Lopez-Castejon G, Brough D, Denes A (2011) Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localized to areas of focal neuronal loss and penumbral tissues. J Neuroinflammation 29(8):186. https://doi.org/10.1186/1742-2094-8-186

    Article  CAS  Google Scholar 

  90. Yang Y et al (2017) ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J Neurosci 37(18):4692–4704. https://doi.org/10.1523/JNEUROSCI.3233-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ito M et al (2019) Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565(7738):246–250. https://doi.org/10.1038/s41586-018-0824-5

    Article  CAS  PubMed  Google Scholar 

  92. Chen H et al (2016) IL-10 Promotes neurite outgrowth and synapse formation in cultured cortical neurons after the oxygen-glucose deprivation via JAK1/STAT3 pathway. Sci Rep 6:30459. https://doi.org/10.1038/srep30459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vainchtein ID et al (2018) Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359(6381):1269–1273. https://doi.org/10.1126/science.aal3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hayakawa K, Qiu J, Lo EH (2010) Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann N Y Acad Sci 1207:50–57. https://doi.org/10.1111/j.1749-6632.2010.05728.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Passalacqua M, Atrone M, Picotti GB, Del Rio M, Sparatore B, Melloni E, Pontremoli S (1998) Stimulated astrocytes release high-mobility group 1 protein, an inducer of LAN-5 neuroblastoma cell differentiation. Neuroscience 82(4):1021–1028. https://doi.org/10.1016/s0306-4522(97)00352-7

    Article  CAS  PubMed  Google Scholar 

  96. Schlueter C, Weber H, Meyer B, Rogalla P, Röser K, Hauke S, Bullerdiek J (2005) Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule. Am J Pathol 166(4):1259–1263. https://doi.org/10.1016/S0002-9440(10)62344-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275(51):40096–40105. https://doi.org/10.1074/jbc.M006993200

    Article  CAS  PubMed  Google Scholar 

  98. Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34(5):269–281. https://doi.org/10.1016/j.tins.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McKimmie CS, Fazakerley JK (2005) In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J Neuroimmunol 169(1–2):116–125. https://doi.org/10.1016/j.jneuroim.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  100. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175(7):4320–4330. https://doi.org/10.4049/jimmunol.175.7.4320

    Article  CAS  PubMed  Google Scholar 

  101. Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling MAPK, and Jak1/Stat1 pathways. Glia 59(2):242–255. https://doi.org/10.1002/glia.21094

    Article  PubMed  Google Scholar 

  102. Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A 107(25):11555–11560. https://doi.org/10.1073/pnas.1006496107

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tang SC et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798–13803. https://doi.org/10.1073/pnas.0702553104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cameron JS et al (2007) Toll-like receptor 3 is a potent negative regulator ofaxonal growth in mammals. J Neurosci 27(47):13033–13041. https://doi.org/10.1523/JNEUROSCI.4290-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. MaY LJ, Chiu I, Wang Y, Sloane JA, Lü J, Kosaras B, Sidman RL, Volpe JJ, Vartanian T (2006) Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 175(2):209–215. https://doi.org/10.1083/jcb.200606016

    Article  CAS  Google Scholar 

  106. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. https://doi.org/10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  107. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cell 28(3):545–554. https://doi.org/10.1002/stem.306

    Article  Google Scholar 

  108. Lathia JD et al (2008) Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. J Neurosci 28(51):13978–13984. https://doi.org/10.1523/JNEUROSCI.2140-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Okun E et al (2010) TLR2 activation inhibits embryonic neural progenitor cell proliferation. J Neurochem 114(2):462–474. https://doi.org/10.1111/j.1471-4159.2010.06778.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartzet M (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9(9):1081–1088. https://doi.org/10.1038/ncb1629

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST, JP21gm1210010), the Japan Society for the Promotion of Science (JSPS) KAKENHI (21H02820, 21K06386), Takeda Science Foundation, and the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shichita.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Immunopathology of Stroke – Guest Editors: Arthur Liesz & Tim Magnus

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, S., Shichita, T. Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol 45, 427–435 (2023). https://doi.org/10.1007/s00281-022-00961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00961-5

Keywords

Navigation