Skip to main content

The Role of Innate Immunity in Ischemic Stroke

  • Chapter
  • First Online:
Chronic Inflammation

Abstract

Inflammation is an essential step in the progression of ischemic stroke pathology. Various mechanisms of innate immunity are implicated in the acute sterile inflammation following ischemic brain injury. Ischemic insults induce the necrotic death of brain cells, which leads to the extracellular release of danger-associated molecular patterns (DAMPs). DAMPs are recognised by pattern recognition receptors (PRRs) in innate immune cells. IL-1β and various neurotoxic mediators are produced by the activation of PRRs. Caspase-1 activation and the formation of inflammasome complex are essential for the production of the active form of IL-1β in ischemic stroke. Recent evidence has supported the use of new therapeutic opportunities for ischemic stroke by targeting DAMPs and inflammasome. This review examines the evidence regarding the essential roles of innate immunity in the creation of novel treatments for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al’Qteishat A et al (2006) Changes in hyaluronan production and metabolism following ischaemic stroke in man. Brain 129:2158–2176

    Article  PubMed  Google Scholar 

  • Allan SM et al (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640

    Article  CAS  PubMed  Google Scholar 

  • Barbelova A et al (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via Toll and P2X receptors. J Biol Chem 284:24035–24048

    Article  Google Scholar 

  • Baroja-Mazo A et al (2014) The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 15:738–748

    Article  CAS  PubMed  Google Scholar 

  • Benakis C et al (2015) The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci 8:461

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutin H et al (2001) Role of Il-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21:5528–5534

    CAS  PubMed  Google Scholar 

  • Chen CJ et al (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856

    Article  CAS  PubMed  Google Scholar 

  • Chuang YT et al (2011) Tumor suppressor death-associated protein kinase is required for full IL-1beta production. Blood 117:960–970

    Article  CAS  PubMed  Google Scholar 

  • Dayon L et al (2011) Brain extracellular fluid protein changes in acute stroke patients. J Proteome Res 10:1043–1051

    Article  CAS  PubMed  Google Scholar 

  • de la Rosa X et al (2014) Mannose-binding lectin promotes local microvascular thrombosis after transient brain ischemia in mice. Stroke 45:1453–1459

    Article  PubMed  Google Scholar 

  • Denes A et al (2015) AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci U S A 112:4050–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duewell P et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Eqea J et al (2014) Small synthetic hyaluronan disaccharides afford neuroprotection in brain ischemia-related models. Neuroscience 265:313–322

    Article  Google Scholar 

  • Famakin BM et al (2011) Disruption of downstream MyD88 or TRIF Toll-like receptor signaling does not protect against cerebral ischemia. Brain Res 1388:148–156

    Article  CAS  PubMed  Google Scholar 

  • Fann DY et al (2013) Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis 4, e790

    Article  CAS  PubMed  Google Scholar 

  • Franklin BS et al (2014) The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol 15:727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey H et al (2013) Biological interplay between proteoglicans and their innate immune receptors in inflammation. FEBS J 280:2165–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross O et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436

    Article  CAS  PubMed  Google Scholar 

  • Gu L et al (2013) T cells contribute to stroke-induced lymphopenia in rats. PLoS One 8, e59602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara H et al (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci U S A 94:2007–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa K et al (2012) Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci U S A 109:7505–7510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung V et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung V et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X et al (2011) Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J Neurosci 31:247–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurn PD et al (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27:1798–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang IK et al (2010) Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in the experimental cerebral ischemic damage. Free Radic Biol Med 48:1242–1251

    Article  CAS  PubMed  Google Scholar 

  • Hyakkoku K et al (2010) Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171:258–267

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M et al (2015) Bruton’s tyrosine kinase (BTK) is essential for NLRP3 inflammasome activation and therapeutic for ischemic brain injury. Nat Commun 6:7360

    Article  PubMed  PubMed Central  Google Scholar 

  • Junghans U et al (1995) Purification of a meningeal cell-derived chondroitin sulphate proteoglycan with neurotrophic activity for brain neurons and its identification as biglycan. Eur J Neurosci 7:2341–2350

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2011) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  Google Scholar 

  • Keller M et al (2008) Active caspase-1 is a regulator of unconventioNLRProtein secretion. Cell 132:818–831

    Article  CAS  PubMed  Google Scholar 

  • Kim ID et al (2012) Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the post-ischemic brain. Mol Ther 20:829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang X et al (2014) Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: involvement of inhibition of TLR4/peroxiredoxin 6 signaling. Free Radic Biol Med 71:165–175

    Article  CAS  PubMed  Google Scholar 

  • Kunze A et al (2014) Peroxiredoxin 5 (PRX5) is correlated inversely to systemic markers of inflammation in acute stroke. Stroke 45:608–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GS et al (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liesz A et al (2015) DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci 35:583–598

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin KM et al (2014) IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci U S A 111:775–780

    Article  CAS  PubMed  Google Scholar 

  • Lok KZ et al (2015) Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia. J Neuroinflammation 12:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu B et al (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488:670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macrez R et al (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10:471–480

    Article  CAS  PubMed  Google Scholar 

  • Maeda N (2015) Proteoglycans and neuronal migration in the cerebral cortex during development and disease. Front Neurosci 9:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariathasan S et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    Article  CAS  PubMed  Google Scholar 

  • Marsh BJ et al (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158:1007–1020

    Article  CAS  PubMed  Google Scholar 

  • Martinon F et al (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  • Martinon F et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  CAS  PubMed  Google Scholar 

  • Muhammad S et al (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28:12023–12031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullen L et al (2015) Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion. Mol Med. doi:10.2119/molmed.2015.00033

    Google Scholar 

  • Offner H et al (2006) Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 176:6523–6531

    Article  CAS  PubMed  Google Scholar 

  • Okada M et al (2014) Lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J Biol Chem 289:32926–32936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrey AC, de la Motte CA (2014) Hyaluronan, a crucial regulator of inflammation. Front Immunol 5:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu J et al (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28:927–938

    Article  CAS  PubMed  Google Scholar 

  • Qu Y et al (2012) Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490:539–542

    Article  CAS  PubMed  Google Scholar 

  • Riddell JR et al (2010) Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J Immunol 184:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Salzano S et al (2014) Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A 111:12157–12162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapojnikova N et al (2014) Correlation between MMP-9 and extracellular cytokine HMGB1 in prediction of human ischemic stroke outcome. Biochim Biophys Acta 1842:1379–1384

    Article  CAS  PubMed  Google Scholar 

  • Seo MS et al (2000) Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 275:20346–20354

    Article  CAS  PubMed  Google Scholar 

  • Shichita T et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15:946–950

    Article  CAS  PubMed  Google Scholar 

  • Shichita T et al (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18:911–917

    Article  CAS  PubMed  Google Scholar 

  • Shichita T et al (2014) Post-ischemic inflammation regulates neural damage and protection. Front Cell Neurosci 8:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens SL et al (2008) Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab 28:1040–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y et al (2012) Pharmacological inhibition of TLR4-NOX4 signal protects against neuronal death in transient focal ischemia. Sci Rep 2:896

    PubMed  PubMed Central  Google Scholar 

  • Suzukio Y et al (2013) Involvement of Mincle and Syk in the changes to innate immunity after ischemic stroke. Sci Rep 3:3177

    Google Scholar 

  • Tang SC et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104:13798–13803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang SC et al (2014) Association between plasma levels of hyaluronic acid and functional outcome in acute stroke patients. J Neuroinflammation 11:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler RD et al (2003) No role for interleukin-18 in acute murine stroke-induced brain injury. J Cereb Blood Flow Metab 23:531–535

    Article  CAS  PubMed  Google Scholar 

  • Yang F et al (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34:660–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Ziegler G et al (2011) Blocking TLR2 in vivo protects against accumulation of inflammatory cells and neuronal injury in experimental stroke. J Cereb Blood Flow Metab 31:757–766

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shichita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Shichita, T., Ito, M., Morita, R., Yoshimura, A. (2016). The Role of Innate Immunity in Ischemic Stroke. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_49

Download citation

Publish with us

Policies and ethics