Geenen V, Savino W (2019) History of the thymus – from a vestigial organ to the programming of immune self-tolerance. In: Passos GA (ed) Thymus Transcriptome and Cell Biology. Springer, London, pp 1–18
Google Scholar
Hammar J (1921) The new views at the morphology of the thymus gland and their hearing on the problem of the function of the thymus. Endocrinology 5:543–573
Google Scholar
Selye H (1946) The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab 6:117–130
CAS
PubMed
Google Scholar
Miller JF (1961) The immune function of the thymus. Lancet 2:748–749
CAS
PubMed
Google Scholar
Medawar PB (1963) discussion after Miller JFAP and Osoba D. role of the thymus in the origin of immune competence. In: Westenholme GEW, Knight J (eds) The immunologically competent cell: its nature and origin. Ciba Foundation Study Group, London, p 70
Google Scholar
Ehrlich P (1900) The Croonian lecture: on immunity. Proc Soc Lond Biol 66:424
CAS
Google Scholar
Tonegawa S, Steinberg C, Dube S, Bernardini A (1974) Evidence for somatic generation of antibody diversity. Proc Natl Acad Sci USA 71:4027–4031
CAS
PubMed
Google Scholar
Malissen M, Minard K, Mjolsness et al (1984) Mouse T cell antigen receptor: structure and organization of constant and joining segments encoding the beta polypeptide. Cell 73:1101–1110
Google Scholar
Ohki H, Martin C, Corbel C, Coltey M, le Douarin N (1987) Tolerance induced by thymic epithelial grafts in birds. Science 237:1032–1035
CAS
PubMed
Google Scholar
Kappler JW, Roehm N, Marrack P (1987) T cell tolerance by clonal elimination in the thymus. Cell 49:273–280
CAS
PubMed
Google Scholar
MacDonald HR, Glasebrook AL, Schneider R et al (1988) T-cell receptor Vβ use predicts reactivity and tolerance to Mlsa-encoded antigens. Nature 332:40–45
CAS
PubMed
Google Scholar
Kisielow P, Blüthman H, Staerz UD et al (1988) Tolerance in T-cell receptor transgenic mice involves deletion of non-mature CD4 + 8+ thymocytes. Nature 333:742–746
CAS
PubMed
Google Scholar
Scollay RG, Butcher EC, Weissman IL (1980) Thymus cell migration. Quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur J Immunol 10:210–218
CAS
PubMed
Google Scholar
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chain (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164
CAS
PubMed
Google Scholar
Josefowicz SZ, Liu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Ann Rev Immunol 30:531–564
CAS
Google Scholar
Wong JB, Tanaka A, Sakaguchi S (2019) Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 50:302–316
Google Scholar
Matzinger P (1993) Why positive selection? Immunol Rev 135:81–117
CAS
PubMed
Google Scholar
Geenen V, Trussart C, Michaux H, Halouani A, Jaïdane H, Collée C, Renard C, Daukandt M, Ledent P, Martens H (2019) The presentation of neuroendocrine self-peptides in the thymus: an essential event for individual life and vertebrate survival. Ann NY Acad Sci 1455:113–126
CAS
PubMed
Google Scholar
Guillemin R, Cohn M, Melnechuk T (eds) (1985) Neural Modulation of Immunity. Raven Press, New York
Google Scholar
Ott I, Scott JC (1909) The action of glandular extracts upon the contractions of the uterus. J Exp Med 11:326–330
CAS
PubMed
PubMed Central
Google Scholar
du Vigneaud V, Ressler C, Trippett S (1953) The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J Biol Chem 205:949–953
CAS
Google Scholar
Gimpl G, Fahrenholz F (2001) The oxytcin receptor system: structure, function, and regulation. Physiol Rev 81:629–683
CAS
PubMed
Google Scholar
Sue Carter C, Kenkel WM, MacLean EL, Wilson SR, Perkeybille AM et al (2020) Is oxytocin nature’s medicine. Pharmacol Rev 72:829–861
CAS
PubMed
Google Scholar
Geenen V, Legros JJ, Franchimont P, Baudrihaye M, Defresne M, Boniver J (1986) The thymus as a neuroendocrine organ: Coexistence of oxytocin and neurophysin in the human thymus. Science 232:508–511
CAS
PubMed
Google Scholar
Geenen V, Legros JJ, Franchimont P et al (1987) The thymus as a neuroendocrine organ. Synthesis of vasopressin and oxytocin in human thymic epithelium. Ann NY Acd Sci 496:56–66
CAS
Google Scholar
Geenen V, Defresne MP, Robert F, Legros JJ, Franchimont P, Boniver J (1988) The neurohormonal thymic microenvironment: immunocytochemical evidence that thymic nurse cells are neuroendocrine cells. Neuroendocrinology 47:365–368
CAS
PubMed
Google Scholar
Nakagawa Y, Ohigashi I, Nitta T, Sakata M, Tanaka K, Murata S, Kanagawa O, Takahama Y (2012) Thymic nurse cells provide microenvironment for secondary T cell receptor a rearrangement in cortical thymocytes. Proc Natl Acad Sci U S A 109:20572–20577
CAS
PubMed
PubMed Central
Google Scholar
Hansenne I, Rasier G, Péqueux C, Brilot F, Renard C, Breton C, Greimers R, Legros JJ, Geenen V, Martens HJ (2005) Ontogenesis and functional aspects of oxytocin and vasopressin gene expression in the thymus network. J Neuroimmunol 158:67–75
CAS
PubMed
Google Scholar
Martens H, Kecha O, Charlet-Renard C, Defresne MP, Geenen V (1998) Neurohypophysial peptides activate phosphorylation of focal adhesion kinases in immature thymocytes. Neuroendocrinology 67:282–289
CAS
PubMed
Google Scholar
Reichardt P, Dornbach B, Gunzer M (2010) APC, T cells and the immune synapse. Curr Top Microbiol Immunol 340:229–249
CAS
PubMed
Google Scholar
Martens H, Goxe GV (1996) The thymic repertoire of neuroendocrine self-peptides in T-cell life and death. Immunol Today 17:312–317
CAS
PubMed
Google Scholar
Geenen V, Kecha O, Martens H (1998) Thymic expression of neuroendocrine self-peptide precursors: role in T-cell survival and self-tolerance. J Neuroendocrinol 10:811–822
CAS
PubMed
Google Scholar
Geenen V, Kroemer G (1993) Multiple ways to cellular immune tolerance. Immunol Today 14:573–575
CAS
PubMed
Google Scholar
Perniola R (2018) Twenty years of AIRE. Front Immunol 9:98 https://doi.org/10.3389/fimmu.2018.00098/full
Geenen V, Vandersmissen E, Cormann-Goffin N, Martens H, Legros JJ, Degiovanni G, Benhida A, Martial J, Franchimont P (1993) Membrane translocation and relationship with MHC class I of a human thymic neurophysin-like molecule. Thymus 22:55–66
CAS
PubMed
Google Scholar
Martens H, Malgrange B, Robert F, Charlet C, de Groote D, Heymann D, Godard A, Soulillou JP, Moonen G, Geenen V (1996) Cytokine production by human thymic epithelial cells: Control by the immune recognition of the neurohypophysial self-antigen. Regul Pept 67:39–45
CAS
PubMed
Google Scholar
Rammensee HG, Falk K, Rötschke O (1993) Peptides naturally presented by MHC class I molecules. Ann Rev Immunol 11:213–244
CAS
Google Scholar
Vanneste Y, Ntodou-Thomé A, Vandersmissen E et al (1997) Identification of neurotensin-related peptides in human thymic epithelial cell membranes and relationship with major histocompatibility complex class I molecules. J Neuroimmunol 76:161–166
CAS
PubMed
Google Scholar
Kyewski BA, Fathman CG, Kaplan HS (1984) Intrathymic presentation of circulating non-major histocompatibility complex antigens. Nature 308:196–199
CAS
PubMed
Google Scholar
Geenen V, Bodart G, Henry S et al (2013) Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Front Neurosc 7:e187
Google Scholar
Jolicœur C, Hanahan D, Smith KM (1994) T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in the thymus. Proc Natl Acad Sci U S A 5:6707–6711
Google Scholar
Smith KM, Olson DC, Hirose R, Hanahan D (1997) Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T-cell tolerance. Int Immunol 9:1355–1365
CAS
PubMed
Google Scholar
Klein L, Kyewski B (2000) “Promiscuous” expression of tissue antigens in the thymus: a key to T-cell tolerance and autoimmunity. J Mol Med 78:483–494
CAS
PubMed
Google Scholar
Derbinsky J, Schulte A, Kyewski B, Klein L (2001) Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2:1032–1039
Google Scholar
Gotter J, Brors B, Hergenhahn M, Kyewski B (2004) Medullary epithelial cells of the thymus express a highly diverse selection of tissue-specific genes co-localized in chromosomal clusters. J Exp Med 199:155–165
CAS
PubMed
PubMed Central
Google Scholar
Koble C, Kyewski B (2009) The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J Exp Med 206:1505–1513
CAS
PubMed
PubMed Central
Google Scholar
Mathis D, Benoist C (2014) Back to central tolerance. Immunity 20:509–516
Google Scholar
Kyewski B, Klein L (2016) A central role for central tolerance. Ann Rev Immunol 24:571–606
Google Scholar
Hansenne I, Charlet-Renard C, Greimers R, Geenen V (2006) Dendritic cell differentiation and immune tolerance to insulin-related peptides in Igf2-deficient mice. J Immunol 176:4651–4657
CAS
PubMed
Google Scholar
Burnet FM (1973) A reassessment of the forbidden clone hypothesis of autoimmune diseases. Aust J Exp Biol Med 50:1–9
Google Scholar
Geenen V (2012) Thymus and type 1 diabetes: an update. Diabetes Res Clin Pract 98:26–32
CAS
PubMed
Google Scholar
Kecha-Kamoun O, Achour I, Martens H, Collette J, Lefebvre PJ, Greiner DL, Geenen V (2001) Thymic expression of insulin-related genes in an animal model of type 1 diabetes. Diab Metab Res Rev 17:146–152
CAS
Google Scholar
Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, Wickramasinghe S, Colle E, Polychronakos C (1997) Insulin expression in human thymus is modulated by INS VTNR alleles at the IDDM2 locus. Nat Genet 15:289–292
CAS
PubMed
Google Scholar
Pugliese A, Zeller M, Fernandez A Jr et al (1997) The insulin gene is transcribed in human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 15:293–297
CAS
PubMed
Google Scholar
Chentoufi AA, Polychronakos C (2002) Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance. Diabetes 51:1383–1390
CAS
PubMed
Google Scholar
Noso S, Kataoka K, Kawabata Y, Babaya N, Hiromine Y, Yamaji K, Fujisawa T, Aramata S, Kudo T, Takahashi S, Ikegami H (2010) Insulin transactivator Mafa regulates intrathymic expression of insulin and affects susceptibility to type 1 diabetes. Diabetes 59:2579–2587
CAS
PubMed
PubMed Central
Google Scholar
Paschke R, Geenen V (1995) Messenger RNA expression for a TSH receptor variant in the thymus of a 2-yr old child. J Mol Med 73:577–580
CAS
PubMed
Google Scholar
Sospedra M, Ferrer-Francesch X, Dominguez O et al (1998) Transcription of a broad range of self-antigens in human thymus suggesting a role for central mechanisms in tolerance towards peripheral antigens. J Immunol 161:5918–5929
CAS
PubMed
Google Scholar
Murakami M, Hosoi Y, Negishi T, Kamiya Y, Miyashita K, Yamada M, Iriuchijima T, Yokoo H, Yoshida I, Tsushima Y, Mori M (1996) Thymic hyperplasia in patients with Graves’ disease. Identification of thyrotropin receptor in human thymus. J Clin Invest 98:2228–2234
CAS
PubMed
PubMed Central
Google Scholar
Colobran R, del Pilar AM, Faner R et al (2011) Association of an SNP with intrathymic expression and Graves’ disease: a role for defective tolerance. Hum Mol Genet 20:3415–3423
CAS
PubMed
Google Scholar
Lv H, Havari E, Pinto S, Gottumukkala RVSRK, Cornivelli L, Raddassi K, Matsui T, Rosenzweig A, Bronson RT, Smith R, Fletcher AL, Turley SJ, Wucherpfennig K, Kyewski B, Lipes MA (2011) Impaired thymic tolerance to a-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest 121:1561–1573
CAS
PubMed
PubMed Central
Google Scholar
Handel AE, Sarosh R, Holländer GA (2018) The role of thymic tolerance in CNS autoimmune disease. Nat Rev Neurosci 14:723–734
CAS
Google Scholar
Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immune self-shadow within the thymus by the Aire protein. Science 298:1395–1401
CAS
PubMed
Google Scholar
The Finnish-German APECED Consortium (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PhD-type zinc-finger domains. Nat Genet 17:399–403
Google Scholar
Nagamine K, Peterson P, Scott H et al (1997) Positional cloning of the APECED gene. Nat Genet 17:393–398
CAS
PubMed
Google Scholar
Irla M, Hugues S, Gill J, Nitta T, Hirosaka Y et al (2008) Autoantigen-specific interactions with CD4+ thymocytes control medullary thymic epithelial cell cellularity. Immunity 29:451–463
CAS
PubMed
Google Scholar
Akiyama T, Shino Y, Yanai H, Qin J, Oshima D et al The tumor necrosis factor family receptor RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29:423–437
Gardner JM, Metzger TC, Mc Mahon EJ, Au-Yeung BB, Krawisz AK et al (2013) Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induces functional inactivation of CD4+ T cells. Immunity 39:560–572
CAS
PubMed
PubMed Central
Google Scholar
Handel AE, Shakama-Dorn N, Zhanybekova S, Maio S, Graedel AN et al (2018) Comprehensively profiling the chromatin architecture of tissue-restricted antigen expression in thymic epithelial cells over development. Front Immunol 9:2120
PubMed
PubMed Central
Google Scholar
Sansom SN, Shikana-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay K et al (2014) Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 24:1918–1931
CAS
PubMed
PubMed Central
Google Scholar
Takaba H, Morishita Y, Tomfuji Y et al (2015) Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163:975–987
CAS
PubMed
Google Scholar
Tomofuji Y, Takaba H, Suzuki H et al (2020) Chd4 choreographs self-antigen expression for central immune tolerance. Nat Immunol 21:892–901. https://doi.org/10.1038/s41590-020-0717-2
CAS
Article
PubMed
Google Scholar
Eckler MJ, Larkan KA, McKennan WL, Katzman S, Guo C et al (2014) Multiple conserved regulatory domains promte Fezf2 expression in the developing cerebral cortex. Neural Dev 9:6
PubMed
PubMed Central
Google Scholar
Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, Sit RV, Neff NF, Darmanis S, Tan W, May AP, Marioni JC, Ponting CP, Holländer GA (2020) Ageing compromises mouse thymus function and remodels epithelial cell differentiation. eLife 9:e56221
CAS
PubMed
PubMed Central
Google Scholar
Fourlanos S, Perry C, Gellert SA, Martinuzzi F, Mallone R et al (2011) Evidence that nasal insulin induces immune tolerance to insulin in adults with autoimmune diabetes. Diabetes 60:1237–1245
CAS
PubMed
PubMed Central
Google Scholar
Roep BO, Solvason N, Gottlieb PA, Abreu JRF, Harrison LC et al (2013) Plasmid-encoding proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8+ T cells. Sci Transl Med 5:191ra82
PubMed
PubMed Central
Google Scholar
Geenen V, Mottet M, Dardenne O, Kermani H, Martens H, Francois JM, Galleni M, Hober D, Rahmouni S, Moutschen M (2010) Thymic self-antigens for the design of a negative/tolerogenic self-vaccination against type 1 diabetes. Curr Opin Pharmacol 10:461–472
CAS
PubMed
Google Scholar
Geenen V, Lefèbvre PJ (1998) The intrathymic expression of insulin-related genes: implications for pathophysiology and prevention of type 1 diabetes. Diab Metab Rev 14:95–103
CAS
Google Scholar
Jaïdane H, Caloone D, Lobert PE et al (2012) Persistent infection of thymic epithelial cells with coxsackievirus B4 results in decreased expression of type 2 insulin-like growth factor. J Virol 86:11151–11162
PubMed
PubMed Central
Google Scholar
Geenen V, Louis C, Martens H, The Belgian Diabetes Registry (2004) An insulin-like growth factor 2-derived self-antigen inducing a regulatory cytokine profile after presentation to peripheral blood mononuclear cells from DQ8+ type 1 diabetic adolescents: preliminary design of a thymus-based tolerogenic self-vaccination. Ann NY Acad Sci 1037:59–64
CAS
PubMed
Google Scholar
Yang G, Geng XR, Song JP, Wu Y, Yan H, Zhan Z, Yang L, He W, Liu ZQ, Qiu S, Liu Z, Yang PC (2014) Insulin-like growth factor 2 enhances regulatory T-cell functions and suppresses food allergy in an experimental model. J Allergy Clin Immunol 133:1702–1708
CAS
PubMed
Google Scholar
Geng XR, Yang G, Li M, Song JP, Liu ZQ, Qiu S, Liu Z, Yang PC (2014) Insulin-like growth factor 2 enhances functions of antigen-specific regulatory B cells. J Biol Chem 289:17941–17950
CAS
PubMed
PubMed Central
Google Scholar
Boehm T, Mccurley N, Sutoh Y et al (2012) VLR-based adaptive immunity. Ann Rev Immunol 30:203–220
CAS
Google Scholar
Flajnik MF (2014) Re-evaluation of the immune Big Bang. Curr Biol 24:R1060–R1065
CAS
PubMed
PubMed Central
Google Scholar
Bajoghli B, Guo P, Aghaalei N et al (2011) A thymus candidate in lampreys. Nature 470:90–94
CAS
PubMed
Google Scholar