Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M et al (2016) International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat Med 22(8):839–850
CAS
PubMed
PubMed Central
Google Scholar
Lewin SR, Rouzioux C (2011) HIV cure and eradication: how will we get from the laboratory to effective clinical trials? AIDS. 25(7):885–897
PubMed
Google Scholar
Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S et al (2012) Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 12(8):607–614
CAS
PubMed
Google Scholar
WHO (2016) Global health sector strategy on HIV 2016-2021, pp 1–60
Google Scholar
Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB et al (2016) Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med 22(9):1043–1049
CAS
PubMed
PubMed Central
Google Scholar
Ho Y-C, Shan L, Hosmane NN, Wang J, Laskey SB et al (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 155(3):540–551
CAS
PubMed
PubMed Central
Google Scholar
Barton K, Hiener B, Winckelmann A, Rasmussen TA, Shao W et al (2016) Broad activation of latent HIV-1 in vivo. Nat Commun 7(May):12731
PubMed
PubMed Central
Google Scholar
Hughes SH, Coffin JM (2016) What integration sites tell us about HIV persistence. Cell Host Microbe 19(5):588–598
CAS
PubMed
PubMed Central
Google Scholar
Pollack RA, Jones RB, Pertea M, Bruner KM, Martin AR et al (2017) Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21(4):494–506.e4
CAS
PubMed
PubMed Central
Google Scholar
Imamichi H, Dewar RL, Adelsberger JW, Rehm CA, O’Doherty U et al (2016) Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci 113(31):8783–8788
CAS
PubMed
PubMed Central
Google Scholar
Bird A (2007) Perceptions of epigenetics. Nature. 447(7143):396–398
CAS
PubMed
Google Scholar
Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500
CAS
PubMed
Google Scholar
Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395
CAS
PubMed
PubMed Central
Google Scholar
Kouzarides T (2007) Chromatin modifications and their function. Cell. 128(4):693–705
CAS
PubMed
Google Scholar
Michalak EM, Burr ML, Bannister AJ, Dawson MA (2019) The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 20(10):573–589
CAS
PubMed
Google Scholar
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature. 403(6765):41–45
CAS
PubMed
Google Scholar
Bemer M (2018) Unraveling the complex epigenetic mechanisms that regulate gene activity. In: Clifton NJ (ed) Methods in molecular biology, vol 1675, pp 205–231
Google Scholar
Rowley MJ, Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19(12):789–800
CAS
PubMed
Google Scholar
Verdin E (1991) DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol 65:6790–6799
CAS
PubMed
PubMed Central
Google Scholar
Verdin E, Paras P, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12(8):3249–3259
CAS
PubMed
PubMed Central
Google Scholar
Rafati H, Parra M, Hakre S, Moshkin Y, Verdin E, Mahmoudi T (2011) Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLoS Biol 9(11)
Ott M, Geyer M, Zhou Q (2011) The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 10(5):426–435
CAS
PubMed
PubMed Central
Google Scholar
Mbonye U, Karn J (2017) The molecular basis for human immunodeficiency virus latency. Annu Rev Virol 4:261–285
CAS
PubMed
Google Scholar
Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38:439–451
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Lu H, Zhou Q (2016) A minor subset of super elongation complexes plays a predominant role in reversing HIV-1 latency. Mol Cell Biol 36(7):1194–1205
CAS
PubMed
PubMed Central
Google Scholar
Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, van Lint C (1999) HIV-1 Tat transcriptional activity is regulated by acetylation. EMBO J 18(21):6106–6118
CAS
PubMed
PubMed Central
Google Scholar
Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology. 6(3):111
PubMed
PubMed Central
Google Scholar
Ne E, Palstra R-J, Mahmoudi T (2017) Transcription : insights from the HIV-1 promoter. Int Rev Cell Mol Biol Transcr Gene Regul Heal Dis 335:191–243
Google Scholar
Sarracino A, Marcello A (2017) The relevance of post-transcriptional mechanisms in HIV latency reversal. Curr Pharm Des 23(28):4103–4111
CAS
PubMed
Google Scholar
Turner A-MW, Margolis DM (2017) Chromatin regulation and the histone code in HIV latency. Yale J Biol Med 90(2):229–243
CAS
PubMed
PubMed Central
Google Scholar
Williams SAF, Greene WC (2005) Host factors regulating post-integration latency of HIV. Trends Microbiol 13(4):137–139
CAS
PubMed
Google Scholar
Williams SA, Chen L-F, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25(1):139–149
CAS
PubMed
Google Scholar
He G, Margolis DM (2002) Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol 22(9):2965–2973
CAS
PubMed
PubMed Central
Google Scholar
Mbonye U, Karn J (2014) Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology. 454–455:328–339
PubMed
Google Scholar
Spivak A, Planelles V (2018) Novel latency reversal agents for HIV-1 cure. Annu Rev Med 69:421–436
CAS
PubMed
Google Scholar
Marban C, Suzanne S, Dequiedt F, De Walque S, Redel L et al (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26(2):412–423
CAS
PubMed
PubMed Central
Google Scholar
Rohr O, Marban C, Aunis D, Schaeffer E (2003) Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 74:736–749
CAS
PubMed
Google Scholar
Marban C, Redel L, Suzanne S, Van Lint C, Lecestre D et al (2005) COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells. Nucleic Acids Res 33(7):2318–2331
CAS
PubMed
PubMed Central
Google Scholar
Le Douce V, Colin L, Redel L, Cherrier T, Herbein G et al (2012) LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucleic Acids Res 40(5):1904–1915
PubMed
Google Scholar
Friedman J, Cho W-K, Chu CK, Keedy KS, Archin NM et al (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. Vol. 85:9078–9089
CAS
Google Scholar
Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications - writers that read. EMBO Reportseports 16(11):1467–1481
CAS
Google Scholar
Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285(22):16538–16545
CAS
PubMed
PubMed Central
Google Scholar
Ding D, Qu X, Li L, Zhou X, Liu S, Lin S, Wang P, Liu S, Kong C, Wang X, Liu L, Zhu H (2013) Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation. Virology. 440:182–189
CAS
PubMed
Google Scholar
Nguyen K, Das B, Dobrowolski C, Karn J (2017) Multiple histone lysine methyltransferases are required for the establishment and maintenance of HIV-1 latency. MBio. 8(1):1–15
Google Scholar
Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21
CAS
PubMed
Google Scholar
Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514
CAS
PubMed
Google Scholar
Zhu H, Wang G, Qian J (2016) Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 17(9):551–565
CAS
PubMed
PubMed Central
Google Scholar
Verma M (2003) Viral genes and methylation. Annu Rev New York Acad Sci 983:170–180
CAS
Google Scholar
Pierard V, Guiguen A, Colin L, Wijmeersch G, Vanhulle C, van Driessche B, Dekoninck A, Blazkova J, Cardona C, Merimi M, Vierendeel V, Calomme C, Nguyên TL, Nuttinck M, Twizere JC, Kettmann R, Portetelle D, Burny A, Hirsch I, Rohr O, van Lint C (2010) DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription. J Biol Chem 285(25):19434–19449
CAS
PubMed
PubMed Central
Google Scholar
Ishida T, Hamano A, Koiwa T, Watanabe T (2006) 5′ long terminal repeat (LTR)-selective methylation of latently infected HIV-1 provirus that is demethylated by reactivation signals. Retrovirology. 3:69
PubMed
PubMed Central
Google Scholar
Bednarik DP, Mosca JD, Raj NB (1987) Methylation as a modulator of expression of human immunodeficiency virus. J Virol 61(4):1253–1257
CAS
PubMed
PubMed Central
Google Scholar
Bednarik D, Cook J, Pitha P (1990) Inactivation of the HIV LTR by DNA CpG methylation: evidence for a role in latency. EMBO J 9(4):1157–1164
CAS
PubMed
PubMed Central
Google Scholar
Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5(6):e1000495
PubMed
PubMed Central
Google Scholar
Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P, Guiguen A, Verdin E, Olive D, van Lint C, Hejnar J, Hirsch I (2009) CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5(8):e1000554
PubMed
PubMed Central
Google Scholar
Chavez L, Kauder S, Verdin E (2011) In vivo, in vitro, and in silico analysis of methylation of the HIV-1 provirus. Methods. 53(1):47–53
CAS
PubMed
Google Scholar
Palacios JA, Pérez-Piñar T, Toro C, Sanz-Minguela B, Moreno V, Valencia E, Gómez-Hernando C, Rodés B (2012) Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J Virol 86(23):13081–13084
CAS
PubMed
PubMed Central
Google Scholar
Blazkova J, Murray D, Justement JS, Funk E, Nelson A et al (2012) Paucity of HIV DNA methylation in latently infected, resting CD4+ T cells from infected individuals receiving antiretroviral therapy. J Virol 86(9):5390–5392
CAS
PubMed
PubMed Central
Google Scholar
Weber S, Weiser B, Kemal KS, Burger H, Ramirez CM, Korn K, Anastos K, Kaul R, Kovacs C, Doerfler W (2014) Epigenetic analysis of HIV-1 proviral genomes from infected individuals: predominance of unmethylated CpG’s. Virology. 449:181–189
CAS
PubMed
Google Scholar
Kint S, De Spiegelaere W, De Kesel J, Vandekerckhove L, Van Criekinge W (2018) Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS One 13(6):e0199091
PubMed
PubMed Central
Google Scholar
LaMere SA, Chaillon A, Huynh C, Smith DM, Gianella S (2019) Challenges in quantifying cytosine methylation in the HIV provirus. MBio. 10(1)
Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D et al (2016) Development of 5′ LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 8:19
PubMed
PubMed Central
Google Scholar
Cortés-Rubio CN, Salgado-Montes de Oca G, Prado-Galbarro FJ, Matías-Florentino M, Murakami-Ogasawara A et al (2019) Longitudinal variation in human immunodeficiency virus long terminal repeat methylation in individuals on suppressive antiretroviral therapy. Clin Epigenetics 11(1):134
PubMed
PubMed Central
Google Scholar
Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16(2):71–84
CAS
PubMed
PubMed Central
Google Scholar
Kaikkonen MU, Lam MTY, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90(3):430–440
CAS
PubMed
PubMed Central
Google Scholar
Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81(1):145–166
CAS
PubMed
Google Scholar
Li J, Chen C, Ma X, Geng G, Liu B et al (2016) Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation. Nat Commun 7:1–10
Google Scholar
Corbeau P (2008) Interfering RNA and HIV: reciprocal interferences. PLoS Pathog 4(9):e1000162
PubMed
PubMed Central
Google Scholar
Miller R (1988) Human immunodeficiency virus may encode a novel protein on the genomic DNA plus strand. Science 239(4846):1420–1422
CAS
PubMed
Google Scholar
Klaver B, Berkhout B (1994) Comparison of 5′ and 3′ long terminal repeat promoter function in human immunodeficiency virus. J Virol 68(6):3830–3840
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi-Ishihara M, Yamagishi M, Hara T, Matsuda Y, Takahashi R et al (2012) HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology. 9(1):38
CAS
PubMed
PubMed Central
Google Scholar
Landry S, Halin M, Lefort S, Audet B, Vaquero C et al (2007) Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology. 4:71
PubMed
PubMed Central
Google Scholar
Clerc I, Laverdure S, Torresilla C, Landry S, Borel S et al (2011) Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells. Retrovirology. 8(1):74
CAS
PubMed
PubMed Central
Google Scholar
Saayman S, Ackley A, Turner A-MW, Famiglietti M, Bosque A et al (2014) An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther 22(6):1164–1175
CAS
PubMed
PubMed Central
Google Scholar
Zapata JC, Campilongo F, Barclay RA, DeMarino C, Iglesias-Ussel MD et al (2017) The human immunodeficiency virus 1 ASP RNA promotes viral latency by recruiting the polycomb repressor complex 2 and promoting nucleosome assembly. Virology. 506(March):34–44
CAS
PubMed
Google Scholar
Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 110(4):521–529
PubMed
Google Scholar
Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD (2007) HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17(8):1186–1194
CAS
PubMed
PubMed Central
Google Scholar
Chen H-C, Martinez JP, Zorita E, Meyerhans A, Filion GJ (2017) Position effects influence HIV latency reversal. Nat Struct Mol Biol 24(1):47–54
CAS
PubMed
Google Scholar
Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11(12):1287–1289
CAS
PubMed
Google Scholar
Lusic M, Siliciano RF (2016) Nuclear landscape of HIV-1 infection and integration. Nat Rev Microbiol 15:69–82. https://doi.org/10.1038/nrmicro.2016.162
CAS
Article
PubMed
Google Scholar
Marini B, Kertesz-Farkas A, Ali H, Lucic B, Lisek K, Manganaro L, Pongor S, Luzzati R, Recchia A, Mavilio F, Giacca M, Lusic M (2015) Nuclear architecture dictates HIV-1 integration site selection. Nature. 521:227–231
CAS
PubMed
Google Scholar
Cohn LB, Silva IT, Oliveira TY, Rosales RA, Parrish EH, Learn GH, Hahn BH, Czartoski JL, McElrath M, Lehmann C, Klein F, Caskey M, Walker BD, Siliciano JD, Siliciano RF, Jankovic M, Nussenzweig MC (2015) HIV-1 integration landscape during latent and active infection. Cell. 160(3):420–432
CAS
PubMed
PubMed Central
Google Scholar
Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, Hill S, Spindler J, Ferris AL, Mellors JW, Kearney MF, Coffin JM, Hughes SH (2014) Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 345(6193):179–183
CAS
PubMed
PubMed Central
Google Scholar
Wagner TA, McLaughlin S, Garg K, Cheung CYK, Larsen BB, Styrchak S, Huang HC, Edlefsen PT, Mullins JI, Frenkel LM (2014) HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 345(6196):570–573
CAS
PubMed
PubMed Central
Google Scholar
Ikeda T, Shibata J, Yoshimura K, Koito A, Matsushita S (2007) Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. J Infect Dis 195(5):716–725
CAS
PubMed
Google Scholar
Demeulemeester J, De Rijck J, Gijsbers R, Debyser Z (2015) Retroviral integration: site matters. BioEssays. 37(11):1202–1214. https://doi.org/10.1002/bies.201500051
Article
PubMed
PubMed Central
Google Scholar
Bui JK, Sobolewski MD, Keele BF, Spindler J, Musick A, Wiegand A, Luke BT, Shao W, Hughes SH, Coffin JM, Kearney MF, Mellors JW (2017) Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLoS Pathog 13(3):e1006283
PubMed
PubMed Central
Google Scholar
Kwon KJ, Siliciano RF (2017) HIV persistence: clonal expansion of cells in the latent reservoir. J Clin Invest 127(7):2536–2538
PubMed
PubMed Central
Google Scholar
Simonetti FR, Sobolewski MD, Fyne E, Shao W, Spindler J, Hattori J, Anderson EM, Watters SA, Hill S, Wu X, Wells D, Su L, Luke BT, Halvas EK, Besson G, Penrose KJ, Yang Z, Kwan RW, van Waes C, Uldrick T, Citrin DE, Kovacs J, Polis MA, Rehm CA, Gorelick R, Piatak M, Keele BF, Kearney MF, Coffin JM, Hughes SH, Mellors JW, Maldarelli F (2016) Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci U S A 113(7):1883–1888
CAS
PubMed
PubMed Central
Google Scholar
Pinzone MR, VanBelzen DJ, Weissman S, Bertuccio MP, Cannon L, Venanzi-Rullo E, Migueles S, Jones RB, Mota T, Joseph SB, Groen K, Pasternak AO, Hwang WT, Sherman B, Vourekas A, Nunnari G, O’Doherty U (2019) Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nat Commun 10(1):728
CAS
PubMed
PubMed Central
Google Scholar
Anderson EM, Maldarelli F (2018) The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology. 15(1):71
CAS
PubMed
PubMed Central
Google Scholar
Coffin JM, Wells DW, Zerbato JM, Kuruc JD, Guo S et al (2019) Clones of infected cells arise early in HIV-infected individuals. JCI Insight 4(12):10–15
Google Scholar
Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA et al (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15(8):893–900
CAS
PubMed
PubMed Central
Google Scholar
Lewinski MK, Bisgrove D, Shinn P, Chen H, Hoffmann C, Hannenhalli S, Verdin E, Berry CC, Ecker JR, Bushman FD (2005) Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79(11):6610–6619
CAS
PubMed
PubMed Central
Google Scholar
Lusic M, Giacca M (2015) Regulation of HIV-1 latency by chromatin structure and nuclear architecture. J Mol Biol 427(3):688–694
CAS
PubMed
Google Scholar
Jordan A, Defechereux P, Verdin E (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 20(7):1726–1738
CAS
PubMed
PubMed Central
Google Scholar
Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22(8):1868–1877
CAS
PubMed
PubMed Central
Google Scholar
Dieudonné M, Maiuri P, Biancotto C, Knezevich A, Kula A, Lusic M, Marcello A (2009) Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery. EMBO J 28(15):2231–2243
PubMed
PubMed Central
Google Scholar
Gallastegui E, Millán-Zambrano G, Terme J-M, Chávez S, Jordan A (2011) Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol 85(7):3187–3202
CAS
PubMed
PubMed Central
Google Scholar
Symons J, Cameron PU, Lewin SR (2017) HIV integration sites and implications for maintenance of the reservoir. Curr Opin HIV AIDS 13(2):152–159
Google Scholar
Cesana D, Santoni de Sio FR, Rudilosso L, Gallina P, Calabria A, Beretta S, Merelli I, Bruzzesi E, Passerini L, Nozza S, Vicenzi E, Poli G, Gregori S, Tambussi G, Montini E (2017) HIV-1-mediated insertional activation of STAT5B and BACH2 trigger viral reservoir in T regulatory cells. Nat Commun 8(1):498
PubMed
PubMed Central
Google Scholar
Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 122(2):169–182
CAS
PubMed
Google Scholar
Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS (2015) A hardwired HIV latency program. Cell. 160(5):990–1001
CAS
PubMed
PubMed Central
Google Scholar
Karn J (2011) The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV/AIDS 6(1):4–11
Google Scholar
Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR (2012) Dynamics and memory of heterochromatin in living cells. Cell. 149(7):1447–1460
CAS
PubMed
PubMed Central
Google Scholar
Hakre S, Chavez L, Shirakawa K, Verdin E (2012) HIV latency: experimental systems and molecular models. FEMS Microbiol Rev 36(3):706–716
CAS
PubMed
Google Scholar
Matsuda Y, Kobayashi-Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M (2015) Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep 5(7701):1–11
Google Scholar
Csankovszki G, Nagy A, Jaenisch R (2001) Synergism of Xist Rna, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153(4):773–784
CAS
PubMed
PubMed Central
Google Scholar
Clark SJ, Melki J (2002) DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene. 21:5380–5387
CAS
PubMed
Google Scholar
Barichievy S, Naidoo J, Mhlanga MM (2015) Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 6(MAR):1–11
CAS
Google Scholar
Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang K-T (2008) MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 5(class I):118
PubMed
PubMed Central
Google Scholar
Bignami F, Pilotti E, Bertoncelli L, Ronzi P, Gulli M, Marmiroli N, Magnani G, Pinti M, Lopalco L, Mussini C, Ruotolo R, Galli M, Cossarizza A, Casoli C (2012) Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1. Blood. 119(26):6259–6267
CAS
PubMed
Google Scholar
Battivelli E, Dahabieh MS, Abdel-Mohsen M, Svensson JP, Tojal Da Silva I et al (2018) Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells. Elife. 1:7
Google Scholar
Paschos K, Allday MJ (2010) Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 18(10):439–447
CAS
PubMed
PubMed Central
Google Scholar
Mujtaba S, Manzur KL, Gurnon JR, Kang M, Van Etten JL, Zhou M-M (2008) Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nat Cell Biol 10(9):1114–1122
CAS
PubMed
PubMed Central
Google Scholar
Sakakibara S, Ueda K, Nishimura K, Do E, Ohsaki E, Okuno T, Yamanishi K (2004) Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi’s sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J Virol 78(14):7299–7310
CAS
PubMed
PubMed Central
Google Scholar
Shamay M, Krithivas A, Zhang J, Hayward SD (2006) Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi’s sarcoma-associated herpesvirus LANA. Proc Natl Acad Sci 103(39):14554–14559
CAS
PubMed
PubMed Central
Google Scholar
Skalska L, White RE, Franz M, Ruhmann M, Allday MJ (2010) Epigenetic repression of p16INK4A by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. PLoS Pathog 6(6):e1000951
PubMed
PubMed Central
Google Scholar
Hattori N, Ushijima T (2016) Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med 8(1):10
PubMed
PubMed Central
Google Scholar
Okamoto Y, Shinjo K, Shimizu Y, Sano T, Yamao K, Gao W, Fujii M, Osada H, Sekido Y, Murakami S, Tanaka Y, Joh T, Sato S, Takahashi S, Wakita T, Zhu J, Issa JP, Kondo Y (2014) Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology. 146(2):562–572
CAS
PubMed
Google Scholar
Mikovits J, Young H, Vertino P, Issa J-P, Pitha P, Turcoski-Corrales S, Taub DD, Petrow CL, Baylin SB, Ruscetti FW (1998) Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase , resulting in de novo methylation of the gamma interferon (IFN-γ) promoter and subsequent downregulation of IFN-γ production infection with human immunodeficiency VI. Mol Cell Biol 18(9):5166–5177
CAS
PubMed
PubMed Central
Google Scholar
Fang J, Mikovits JA, Bagni R, Cari L, Ruscetti FW et al (2001) Infection of lymphoid cells by immunodeficiency virus type 1 increases de novo methylation infection of lymphoid cells by integration-defective human immunodeficiency virus type 1 increases de novo methylation. J Virol 75(20):9753–9761
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Zhang S, Pan X, Hu XH, Zhang YH, Yuan F, Huang T, Cai YD (2019) HIV infection alters the human epigenetic landscape. Gene Ther 26(1–2):29–39
CAS
PubMed
Google Scholar
Nelson KN, Hui Q, Rimland D, Xu K, Freiberg MS, Justice AC, Marconi VC, Sun YV (2017) Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. AIDS. 31(4):571–575
CAS
PubMed
Google Scholar
Gross AM, Jaeger PA, Kreisberg JF, Licon K, Jepsen KL, Khosroheidari M, Morsey BM, Swindells S, Shen H, Ng CT, Flagg K, Chen D, Zhang K, Fox HS, Ideker T (2016) Methylome-wide analysis of chronic HIV infection reveals five-year increase in biological age and epigenetic targeting of HLA. Mol Cell 62(2):157–168
CAS
PubMed
PubMed Central
Google Scholar
Maricato JT, Furtado MN, Takenaka MC, Nunes ERM, Fincatti P, Meliso FM, da Silva ID, Jasiulionis MG, Cecília de Araripe Sucupira M, Diaz RS, Janini LM (2015) Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences. PLoS One 10(4):e0119234
PubMed
PubMed Central
Google Scholar
Britton L-MP, Sova P, Belisle S, Liu S, Chan EY et al (2014) A proteomic glimpse into the initial global epigenetic changes during HIV infection. Proteomics. 14(19):2226–2230
CAS
PubMed
PubMed Central
Google Scholar
Perreau M, Banga R, Pantaleo G (2017) Targeted immune interventions for an HIV-1 cure. Trends Mol Med 23(10):945–961
CAS
PubMed
Google Scholar
Zerbato JM, Purves HV, Lewin SR, Rasmussen TA (2019) Between a shock and a hard place: challenges and developments in HIV latency reversal. Curr Opin Virol 38:1–9
PubMed
PubMed Central
Google Scholar
Chun T-W, Engel D, Mizell SB, Hallahan CW, Fischette MR, Park S, Davey RT Jr, Dybul M, Kovacs JA, Metcalf JA, Mican JM, Berrey MM, Corey L, Lane HC, Fauci AS (1999) Effect of interleukin-2 on the pool of latently infected resting CD4 + T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med 5(6):651–655
CAS
PubMed
Google Scholar
Prins JM, Jurriaans S, van Praag RME, Blaak H, van Rij R, Schellekens PT, ten Berge I, Yong SL, Fox CH, Roos MT, de Wolf F, Goudsmit J, Schuitemaker H, Lange JM (1999) Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS. 13:2405–2410
CAS
PubMed
Google Scholar
Davey RT, Bhat N, Yoder C, Chun T-W, Metcalf JA et al (1999) HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci 96(26):15109–15114
CAS
PubMed
PubMed Central
Google Scholar
Rasmussen TA, Tolstrup M, Søgaard OS (2015) Reversal of latency as part of a cure for HIV-1. Trends Microbiol
Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 487(7408):482–485
CAS
PubMed
PubMed Central
Google Scholar
Rasmussen TA, Lewin SR (2016) Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS 11(4):394–401
CAS
PubMed
Google Scholar
Boritz EA, Darko S, Swaszek L, Wolf G, Wells D et al (2016) Multiple origins of virus persistence during natural control of HIV infection. Cell:1–12
Grau-Expósito J, Luque-Ballesteros L, Navarro J, Curran A, Burgos J, Ribera E, Torrella A, Planas B, Badía R, Martin-Castillo M, Fernández-Sojo J, Genescà M, Falcó V, Buzon MJ (2019) Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog 15(8):e1007991
PubMed
PubMed Central
Google Scholar
Vanhamel J, Bruggemans A, Debyser Z (2019) Establishment of latent HIV-1 reservoirs: what do we really know? J Virus Erad 5(1):3–9
PubMed
PubMed Central
Google Scholar
Barouch DH, Deeks SG (2014) Immunologic strategies for HIV-1 remission and eradication. Science. 345(6193):169–174
CAS
PubMed
PubMed Central
Google Scholar
Sengupta S, Siliciano RF (2018) Targeting the latent reservoir for HIV-1. Immunodefic Rev 48:872–895
CAS
Google Scholar
Elsheikh MM, Tang Y, Li D, Jiang G (2019) Deep latency: a new insight into a functional HIV cure. EBioMedicine. 45:624–629
PubMed
PubMed Central
Google Scholar
Kessing CF, Nixon CC, Li C, Tsai P, Takata H, Mousseau G, Ho PT, Honeycutt JB, Fallahi M, Trautmann L, Garcia JV, Valente ST (2017) In vivo suppression of HIV rebound by didehydro-cortistatin A, a “block-and-lock” strategy for HIV-1 treatment. Cell Rep 21(3):600–611
CAS
PubMed
PubMed Central
Google Scholar
Mousseau G, Clementz MA, Bakeman WN, Nagarsheth N, Cameron M, Shi J, Baran P, Fromentin R, Chomont N, Valente ST (2012) An analog of the natural steroidal alkaloid cortistatin A potently suppresses tat-dependent HIV transcription. Cell Host Microbe 12(1):97–108
CAS
PubMed
PubMed Central
Google Scholar
Li C, Mousseau G, Valente ST (2019) Tat inhibition by didehydro-cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics Chromatin 12(1):23
CAS
PubMed
PubMed Central
Google Scholar
Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST (2015) The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio. 6(4):e00465
CAS
PubMed
PubMed Central
Google Scholar
Mousseau G, Aneja R, Clementz MA, Mediouni S, Lima NS et al (2019) Resistance to the Tat inhibitor didehydro-cortistatin A is mediated by heightened basal HIV-1 transcription. MBio. 10(4)
Rice AP (2019) Unexpected mutations in HIV-1 that confer resistance to the Tat inhibitor didehydro-cortistatin A. MBio. 10(4):1–4
CAS
Google Scholar
Demeulemeester J, Chaltin P, Marchand A, De Maeyer M, Debyser Z, Christ F (2014) LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 – 2014). Expert Opin Ther Pat 24(6):609–632
CAS
PubMed
Google Scholar
Vansant G, Vranckx LS, Zurnic I, Van Looveren D, Van de Velde P et al (2019) Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology. 16(1):8
PubMed
PubMed Central
Google Scholar
Vranckx LS, Demeulemeester J, Saleh S, Boll A, Vansant G, Schrijvers R, Weydert C, Battivelli E, Verdin E, Cereseto A, Christ F, Gijsbers R, Debyser Z (2016) LEDGIN-mediated inhibition of integrase–LEDGF/p75 interaction reduces reactivation of residual latent HIV. EBioMedicine. 8:248–264
PubMed
PubMed Central
Google Scholar
Balakrishnan M, Yant SR, Tsai L, O’Sullivan C, Bam RA et al (2013) Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 8(9):e74163
CAS
PubMed
PubMed Central
Google Scholar
Nehme Z, Pasquereau S, Herbein G. 2019. Control of viral infections by epigenetic-targeted therapy. Clin Epigenetics 11(1):1–17