Skip to main content
Log in

Using maximum plasma concentration (Cmax) to personalize taxane treatment and reduce toxicity

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Taxanes are a widely used class of anticancer agents that play a vital role in the treatment of a variety of cancers. However, toxicity remains a major concern of using taxane drugs as some toxicities are highly prevalent, they can not only adversely affect patient prognosis but also compromise the overall treatment plan. Among all kinds of factors that associated with taxane toxicity, taxane exposure has been extensively studied, with different pharmacokinetic (PK) parameters being used as toxicity predictors. Compared to other widely used predictors such as the area under the drug plasma concentration curve versus time (AUC) and time above threshold plasma drug concentration, maximum plasma concentration (Cmax) is easier to collect and shows promise for use in clinical practice. In this article, we review the previous research on using Cmax to predict taxane treatment outcomes. While Cmax and toxicity have been extensively studied, research on the relationship between Cmax and efficacy is lacking. Most of the articles find a positive relationship between Cmax and toxicity but several articles have contradictory findings. Future clinical trials are needed to validate the relationship between Cmax and treatment outcome and determine whether Cmax can serve as a useful surrogate endpoint of taxane treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. da Costa R, Passos GF, Quintao NLM, Fernandes ES, Maia J, Campos MM, Calixto JB (2020) Taxane-induced neurotoxicity: pathophysiology and therapeutic perspectives. Br J Pharmacol 177(14):3127–3146. https://doi.org/10.1111/bph.15086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant Antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327. https://doi.org/10.1021/ja00738a045

    Article  CAS  PubMed  Google Scholar 

  3. Nicolaou KC, Riemer C, Kerr MA, Rideout D, Wrasidlo W (1993) Design, synthesis and biological activity of protaxols. Nature 364(6436):464–466. https://doi.org/10.1038/364464a0

    Article  CAS  PubMed  Google Scholar 

  4. Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, Cánovas-Díaz M, de Diego Puente T (2020) A Compressive Review about Taxol(®): history and Future challenges. Molecules 25(24). https://doi.org/10.3390/molecules25245986

  5. Muth M, Ojara FW, Kloft C, Joerger M (2021) Role of TDM-based dose adjustments for taxane anticancer drugs. Br J Clin Pharmacol 87(2):306–316. https://doi.org/10.1111/bcp.14678

    Article  CAS  PubMed  Google Scholar 

  6. Atrafi F, van Eerden RAG, van Hylckama Vlieg MAM, Oomen-de Hoop E, de Bruijn P, Lolkema MP, Moelker A, Rijcken CJ, Hanssen R, Sparreboom A, Eskens F, Mathijssen RHJ, Koolen SLW (2020) Intratumoral Comparison of Nanoparticle Entrapped Docetaxel (CPC634) with conventional docetaxel in patients with solid tumors. Clin Cancer Res 26(14):3537–3545. https://doi.org/10.1158/1078-0432.Ccr-20-0008

    Article  CAS  PubMed  Google Scholar 

  7. Paclitaxel TW (ed) (2023) UpToDate. Waltham, MA: Inc. http://www.uptodate.com. (2023) Waltham, MA: Inc.

  8. Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G (2021) Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Updat 54:100742. https://doi.org/10.1016/j.drup.2020.100742

    Article  CAS  PubMed  Google Scholar 

  9. Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053. https://doi.org/10.1517/14656566.7.8.1041

    Article  CAS  PubMed  Google Scholar 

  10. Tofthagen C, McAllister RD, Visovsky C (2013) Peripheral neuropathy caused by Paclitaxel and docetaxel: an evaluation and comparison of symptoms. J Adv Pract Oncol 4(4):204–215

    PubMed  PubMed Central  Google Scholar 

  11. Molassiotis A, Cheng HL, Lopez V, Au JSK, Chan A, Bandla A, Leung KT, Li YC, Wong KH, Suen LKP, Chan CW, Yorke J, Farrell C, Sundar R (2019) Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 19(1):132. https://doi.org/10.1186/s12885-019-5302-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Seidman AD, Berry D, Cirrincione C, Harris L, Muss H, Marcom PK, Gipson G, Burstein H, Lake D, Shapiro CL, Ungaro P, Norton L, Winer E, Hudis C (2008) Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol 26(10):1642–1649. https://doi.org/10.1200/jco.2007.11.6699

    Article  CAS  PubMed  Google Scholar 

  13. Loprinzi CL, Lacchetti C, Bleeker J, Cavaletti G, Chauhan C, Hertz DL, Kelley MR, Lavino A, Lustberg MB, Paice JA, Schneider BP, Lavoie Smith EM, Smith ML, Smith TJ, Wagner-Johnston N, Hershman DL (2020) Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in survivors of adult cancers: ASCO Guideline Update. J Clin Oncol 38(28):3325–3348. https://doi.org/10.1200/jco.20.01399

    Article  PubMed  Google Scholar 

  14. Speck RM, Sammel MD, Farrar JT, Hennessy S, Mao JJ, Stineman MG, DeMichele A (2013) Impact of chemotherapy-induced peripheral neuropathy on treatment delivery in nonmetastatic breast cancer. J Oncol Pract 9(5):e234–240. https://doi.org/10.1200/jop.2012.000863

    Article  PubMed  Google Scholar 

  15. Hertz DL, Childs DS, Park SB, Faithfull S, Ke Y, Ali NT, McGlown SM, Chan A, Grech LB, Loprinzi CL, Ruddy KJ, Lustberg M (2021) Patient-centric decision framework for treatment alterations in patients with chemotherapy-induced Peripheral Neuropathy (CIPN). Cancer Treat Rev 99:102241. https://doi.org/10.1016/j.ctrv.2021.102241

    Article  CAS  PubMed  Google Scholar 

  16. Loibl S, Skacel T, Nekljudova V, Lück HJ, Schwenkglenks M, Brodowicz T, Zielinski C, von Minckwitz G (2011) Evaluating the impact of relative total dose intensity (RTDI) on patients’ short and long-term outcome in taxane- and anthracycline-based chemotherapy of metastatic breast cancer- a pooled analysis. BMC Cancer 11:131. https://doi.org/10.1186/1471-2407-11-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lyman GH, Dale DC, Crawford J (2003) Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: a nationwide study of community practices. J Clin Oncol 21(24):4524–4531. https://doi.org/10.1200/jco.2003.05.002

    Article  PubMed  Google Scholar 

  18. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37(13):1590–1598. https://doi.org/10.1016/S0959-8049(01)00171-X

    Article  CAS  PubMed  Google Scholar 

  19. Baker J, Ajani J, Scotté F, Winther D, Martin M, Aapro MS, von Minckwitz G (2009) Docetaxel-related side effects and their management. Eur J Oncol Nurs 13(1):49–59. https://doi.org/10.1016/j.ejon.2008.10.003

    Article  PubMed  Google Scholar 

  20. Wist EA, Mjaaland I, Løkkevik E, Sommer HH (2012) Weekly Paclitaxel plus Capecitabine versus Docetaxel Every 3 Weeks plus Capecitabine in Metastatic Breast Cancer. J Oncol 2012:862921. https://doi.org/10.1155/2012/862921

  21. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H (2007) Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 6(5):609–621. https://doi.org/10.1517/14740338.6.5.609

    Article  CAS  PubMed  Google Scholar 

  22. Pusztai L (2007) Markers predicting clinical benefit in breast cancer from microtubule-targeting agents. Ann Oncol 18 Suppl 12xii15–20. https://doi.org/10.1093/annonc/mdm534

  23. Kirino S, Tsuchiya K, Kurosaki M, Kaneko S, Inada K, Yamashita K, Osawa L, Hayakawa Y, Sekiguchi S, Okada M, Wang W, Higuchi M, Takaura K, Maeyashiki C, Tamaki N, Yasui Y, Nakanishi H, Itakura J, Takahashi Y, Asahina Y, Izumi N (2020) Relative dose intensity over the first four weeks of lenvatinib therapy is a factor of favorable response and overall survival in patients with unresectable hepatocellular carcinoma. PLoS ONE 15(4):e0231828. https://doi.org/10.1371/journal.pone.0231828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, Davidson NE, Martino S, Livingston R, Ingle JN, Perez EA, Carpenter J, Hurd D, Holland JF, Smith BL, Sartor CI, Leung EH, Abrams J, Schilsky RL, Muss HB, Norton L (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 21(8):1431–1439. https://doi.org/10.1200/jco.2003.09.081

    Article  CAS  PubMed  Google Scholar 

  25. Del Mastro L, De Placido S, Bruzzi P, De Laurentiis M, Boni C, Cavazzini G, Durando A, Turletti A, Nisticò C, Valle E, Garrone O, Puglisi F, Montemurro F, Barni S, Ardizzoni A, Gamucci T, Colantuoni G, Giuliano M, Gravina A, Papaldo P, Bighin C, Bisagni G, Forestieri V, Cognetti F (2015) Fluorouracil and dose-dense chemotherapy in adjuvant treatment of patients with early-stage breast cancer: an open-label, 2 × 2 factorial, randomised phase 3 trial. Lancet 385(9980):1863–1872. https://doi.org/10.1016/s0140-6736(14)62048-1

    Article  PubMed  Google Scholar 

  26. Increasing the dose intensity Of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials (2019). Lancet 393(10179):1440–1452. https://doi.org/10.1016/s0140-6736(18)33137-4

  27. Cespedes Feliciano EM, Chen WY, Lee V, Albers KB, Prado CM, Alexeeff S, Xiao J, Shachar SS, Caan BJ (2020) Body composition, adherence to Anthracycline and Taxane-based chemotherapy, and Survival after nonmetastatic breast Cancer. JAMA Oncol 6(2):264–270. https://doi.org/10.1001/jamaoncol.2019.4668

    Article  PubMed  Google Scholar 

  28. Baille P, Bruno R, Schellens JH, Webster LK, Millward M, Verweij J, Montay G (1997) Optimal sampling strategies for bayesian estimation of docetaxel (Taxotere) clearance. Clin Cancer Res 3(9):1535–1538

    CAS  PubMed  Google Scholar 

  29. Engels FK, Loos WJ, van der Bol JM, de Bruijn P, Mathijssen RH, Verweij J, Mathot RA (2011) Therapeutic drug monitoring for the individualization of docetaxel dosing: a randomized pharmacokinetic study. Clin Cancer Res 17(2):353–362. https://doi.org/10.1158/1078-0432.Ccr-10-1636

    Article  CAS  PubMed  Google Scholar 

  30. Ma Y, Lin Q, Yang Y, Liang W, Salamone SJ, Li Y, Lin Y, Zhao H, Zhao Y, Fang W, Huang Y, Zhang L (2020) Clinical pharmacokinetics and drug exposure-toxicity correlation study of docetaxel based chemotherapy in Chinese head and neck cancer patients. Ann Transl Med 8(5):236. https://doi.org/10.21037/atm.2020.01.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun N, Shen B, Zhu J, Zhang X, Zhu H, Liang G, Yang D, Lu J, Zhang Y (2020) Clinical application of the AUC-guided dosage adjustment of docetaxel-based chemotherapy for patients with solid tumours: a single centre, prospective and randomised control study. J Translational Med 18(1):226. https://doi.org/10.1186/s12967-020-02394-w

    Article  CAS  Google Scholar 

  32. Gianni L, Kearns CM, Giani A, Capri G, Viganó L, Lacatelli A, Bonadonna G, Egorin MJ (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13(1):180–190. https://doi.org/10.1200/jco.1995.13.1.180

    Article  CAS  PubMed  Google Scholar 

  33. Joerger M, Kraff S, Huitema AD, Feiss G, Moritz B, Schellens JH, Beijnen JH, Jaehde U (2012) Evaluation of a pharmacology-driven dosing algorithm of 3-weekly paclitaxel using therapeutic drug monitoring: a pharmacokinetic-pharmacodynamic simulation study. Clin Pharmacokinet 51(9):607–617. https://doi.org/10.1007/bf03261934

    Article  CAS  PubMed  Google Scholar 

  34. Joerger M, von Pawel J, Kraff S, Fischer JR, Eberhardt W, Gauler TC, Mueller L, Reinmuth N, Reck M, Kimmich M, Mayer F, Kopp HG, Behringer DM, Ko YD, Hilger RA, Roessler M, Kloft C, Henrich A, Moritz B, Miller MC, Salamone SJ, Jaehde U (2016) Open-label, randomized study of individualized, pharmacokinetically (PK)-guided dosing of paclitaxel combined with carboplatin or cisplatin in patients with advanced non-small-cell lung cancer (NSCLC). Ann Oncol 27(10):1895–1902. https://doi.org/10.1093/annonc/mdw290

    Article  CAS  PubMed  Google Scholar 

  35. Hertz DL, Kidwell KM, Vangipuram K, Li F, Pai MP, Burness M, Griggs JJ, Schott AF, Van Poznak C, Hayes DF, Lavoie Smith EM, Henry NL (2018) Paclitaxel plasma concentration after the first infusion predicts treatment-limiting Peripheral Neuropathy. Clin Cancer Res 24(15):3602–3610. https://doi.org/10.1158/1078-0432.Ccr-18-0656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bruno R, Hille D, Riva A, Vivier N, ten Bokkel Huinnink WW, van Oosterom AT, Kaye SB, Verweij J, Fossella FV, Valero V, Rigas JR, Seidman AD, Chevallier B, Fumoleau P, Burris HA, Ravdin PM, Sheiner LB (1998) Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol 16(1):187–196. https://doi.org/10.1200/jco.1998.16.1.187

    Article  CAS  PubMed  Google Scholar 

  37. Bruno R, Olivares R, Berille J, Chaikin P, Vivier N, Hammershaimb L, Rhodes GR, Rigas JR (2003) Alpha-1-acid glycoprotein as an independent predictor for treatment effects and a prognostic factor of survival in patients with non-small cell lung cancer treated with docetaxel. Clin Cancer Res 9(3):1077–1082

    CAS  PubMed  Google Scholar 

  38. Diéras V, Lortholary A, Laurence V, Delva R, Girre V, Livartowski A, Assadourian S, Semiond D, Pierga JY (2013) Cabazitaxel in patients with advanced solid tumours: results of a phase I and pharmacokinetic study. Eur J Cancer 49(1):25–34. https://doi.org/10.1016/j.ejca.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  39. Mita AC, Denis LJ, Rowinsky EK, Debono JS, Goetz AD, Ochoa L, Forouzesh B, Beeram M, Patnaik A, Molpus K, Semiond D, Besenval M, Tolcher AW (2009) Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel taxane, administered as a 1-hour infusion every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 15(2):723–730. https://doi.org/10.1158/1078-0432.Ccr-08-0596

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi M, Oba K, Sakamoto J, Kondo K, Nagata N, Okabayashi T, Namikawa T, Hanazaki K (2007) Pharmacokinetic study of weekly administration dose of paclitaxel in patients with advanced or recurrent gastric cancer in Japan. Gastric Cancer 10(1):52–57. https://doi.org/10.1007/s10120-006-0411-6

    Article  CAS  PubMed  Google Scholar 

  41. Huizing MT, Giaccone G, van Warmerdam LJ, Rosing H, Bakker PJ, Vermorken JB, Postmus PE, van Zandwijk N, Koolen MG, ten Bokkel Huinink WW, van der Vijgh WJ, Bierhorst FJ, Lai A, Dalesio O, Pinedo HM, Veenhof CH, Beijnen JH (1997) Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer. The European Cancer Centre. J Clin Oncol 15(1):317–329. https://doi.org/10.1200/jco.1997.15.1.317

    Article  CAS  PubMed  Google Scholar 

  42. Ma Y, Zhao X, Chen X, Huang X, Lin Q, Lin Y, Salamone SJ, Zhou X, Wang C, Liang W, Zhao H, Wu K, Yang Y, Zhang L (2021) Therapeutic drug monitoring of docetaxel by pharmacokinetics and pharmacogenetics: a randomized clinical trial of AUC-guided dosing in nonsmall cell lung cancer. Clin Transl Med 11(4):e354. https://doi.org/10.1002/ctm2.354

    Article  PubMed  PubMed Central  Google Scholar 

  43. Joerger M, Huitema AD, Richel DJ, Dittrich C, Pavlidis N, Briasoulis E, Vermorken JB, Strocchi E, Martoni A, Sorio R, Sleeboom HP, Izquierdo MA, Jodrell DI, Calvert H, Boddy AV, Hollema H, Fety R, Van der Vijgh WJ, Hempel G, Chatelut E, Karlsson M, Wilkins J, Tranchand B, Schrijvers AH, Twelves C, Beijnen JH, Schellens JH (2007) Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group. Clin Cancer Res 13(21):6410–6418. https://doi.org/10.1158/1078-0432.CCR-07-0064

    Article  CAS  PubMed  Google Scholar 

  44. Chen N, Li Y, Ye Y, Palmisano M, Chopra R, Zhou S (2014) Population pharmacokinetics (PK) and exposure–neutropenia relationship of nab-paclitaxel (nab-P) in patients (pts) with solid tumors. J Clin Oncol 32(15_suppl):2559–2559. https://doi.org/10.1200/jco.2014.32.15_suppl.2559

    Article  Google Scholar 

  45. Zhang J, Zhou F, Qi H, Ni H, Hu Q, Zhou C, Li Y, Baburina I, Courtney J, Salamone SJ (2019) Randomized study of individualized pharmacokinetically-guided dosing of paclitaxel compared with body-surface area dosing in Chinese patients with advanced non-small cell lung cancer. Br J Clin Pharmacol 85(10):2292–2301. https://doi.org/10.1111/bcp.13982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naoki K, Kunikane H, Fujii T, Tsujimura S, Hida N, Okamoto H, Watanabe K (2009) Dose-escalating and pharmacokinetic study of a weekly combination of paclitaxel and carboplatin for inoperable non-small cell lung cancer: JCOG 9910-DI. Jpn J Clin Oncol 39(9):569–575. https://doi.org/10.1093/jjco/hyp059

    Article  PubMed  Google Scholar 

  47. Jiko M, Yano I, Sato E, Takahashi K, Motohashi H, Masuda S, Okuda M, Ito N, Nakamura E, Segawa T, Kamoto T, Ogawa O, Inui K (2007) Pharmacokinetics and pharmacodynamics of paclitaxel with carboplatin or gemcitabine, and effects of CYP3A5 and MDR1 polymorphisms in patients with urogenital cancers. Int J Clin Oncol 12(4):284–290. https://doi.org/10.1007/s10147-007-0681-y

    Article  CAS  PubMed  Google Scholar 

  48. Gao B, Lu Y, Nieuweboer AJM, Xu H, Beesley J, Boere I, de Graan AM, de Bruijn P, Gurney H, C JK, Chiew YE, Johnatty SE, Beale P, Harrison M, Luccarini C, Conroy D, Mathijssen RHJ, P RH, Balleine RL, Chenevix-Trench G, Macgregor S, de Fazio A (2018) Genome-wide association study of paclitaxel and carboplatin disposition in women with epithelial ovarian cancer. Sci Rep 8(1):1508. https://doi.org/10.1038/s41598-018-19590-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fleming GF, Kugler JW, Hoffman PC, Ansari R, Bitran JD, Klepsch A, Malone D, Fasanmade AA, Ratain MJ, Vokes EE (1998) Phase II trial of paclitaxel and topotecan with granulocyte colony-stimulating factor support in stage IV breast cancer. J Clin Oncol 16(6):2032–2037. https://doi.org/10.1200/jco.1998.16.6.2032

    Article  CAS  PubMed  Google Scholar 

  50. Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, Ring SE, Bedikian A, Hortobagyi GN, Ellerhorst JA (2002) Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8(5):1038–1044

    CAS  PubMed  Google Scholar 

  51. Mross K, Häring B, Holländer N, Mielke S, Behringer D, Massing U, Unger C (2002) Comparison of 1-hour and 3-hours paclitaxel infusion pharmacokinetics: results from a randomized trial. Onkologie 25(6):503–508. https://doi.org/10.1159/000068620

    Article  CAS  PubMed  Google Scholar 

  52. de Graan AJ, Elens L, Sprowl JA, Sparreboom A, Friberg LE, van der Holt B, de Raaf PJ, de Bruijn P, Engels FK, Eskens FA, Wiemer EA, Verweij J, Mathijssen RH, van Schaik RH (2013) CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin Cancer Res 19(12):3316–3324. https://doi.org/10.1158/1078-0432.Ccr-12-3786

    Article  PubMed  PubMed Central  Google Scholar 

  53. Somlo G, Doroshow JH, Synold T, Longmate J, Reardon D, Chow W, Forman SJ, Leong LA, Margolin KA, Morgan RJ Jr., Raschko JW, Shibata SI, Tetef ML, Yen Y, Kogut N, Schriber J, Alvarnas J (2001) High-dose paclitaxel in combination with doxorubicin, cyclophosphamide and peripheral blood progenitor cell rescue in patients with high-risk primary and responding metastatic breast carcinoma: toxicity profile, relationship to paclitaxel pharmacokinetics and short-term outcome. Br J Cancer 84(12):1591–1598. https://doi.org/10.1054/bjoc.2001.1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Papadopoulos KP, Egorin MJ, Huang M, Troxel AB, Kaufman E, Balmaceda CM, Vahdat LT, Hesdorffer CS (2001) The pharmacokinetics and pharmacodynamics of high-dose paclitaxel monotherapy (825 mg/m2 continuous infusion over 24 h) with hematopoietic support in women with metastatic breast cancer. Cancer Chemother Pharmacol 47(1):45–50. https://doi.org/10.1007/s002800000193

    Article  CAS  PubMed  Google Scholar 

  55. Minami H, Kawada K, Sasaki Y, Igarashi T, Saeki T, Tahara M, Itoh K, Fujii H (2006) Pharmacokinetics and pharmacodynamics of protein-unbound docetaxel in cancer patients. Cancer Sci 97(3):235–241. https://doi.org/10.1111/j.1349-7006.2006.00166.x

    Article  CAS  PubMed  Google Scholar 

  56. Hendrikx J, Stuurman FE, Song JY, de Weger VA, Lagas JS, Rosing H, Beijnen JH, Schinkel AH, Schellens JHM, Marchetti S (2020) No relation between docetaxel administration route and high-grade diarrhea incidence. Pharmacol Res Perspect 8(4):e00633. https://doi.org/10.1002/prp2.633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Weger VA, Stuurman FE, Koolen SLW, Moes JJ, Hendrikx J, Sawicki E, Thijssen B, Keessen M, Rosing H, Mergui-Roelvink M, Huitema ADR, Nuijen B, Beijnen JH, Schellens JHM, Marchetti S (2019) A phase I dose Escalation Study of once-weekly oral administration of Docetaxel as ModraDoc001 Capsule or ModraDoc006 Tablet in Combination with Ritonavir. Clin Cancer Res 25(18):5466–5474. https://doi.org/10.1158/1078-0432.Ccr-17-2299

    Article  PubMed  Google Scholar 

  58. de Weger VA, Stuurman FE, Hendrikx J, Moes JJ, Sawicki E, Huitema ADR, Nuijen B, Thijssen B, Rosing H, Keessen M, Mergui-Roelvink M, Beijnen JH, Schellens JHM, Marchetti S (2017) A dose-escalation study of bi-daily once weekly oral docetaxel either as ModraDoc001 or ModraDoc006 combined with ritonavir. Eur J Cancer 86:217–225. https://doi.org/10.1016/j.ejca.2017.09.010

    Article  CAS  PubMed  Google Scholar 

  59. Hertz DL (2021) Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 17(2):227–239. https://doi.org/10.1080/17425255.2021.1856367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clarke SJ, Rivory LP (1999) Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 36(2):99–114. https://doi.org/10.2165/00003088-199936020-00002

    Article  CAS  PubMed  Google Scholar 

  61. Kumar GN, Walle UK, Bhalla KN, Walle T (1993) Binding of taxol to human plasma, albumin and alpha 1-acid glycoprotein. Res Commun Chem Pathol Pharmacol 80(3):337–344

    CAS  PubMed  Google Scholar 

  62. Urien S, Barré J, Morin C, Paccaly A, Montay G, Tillement J-P (1996) Docetaxel serum protein binding with high affinity to alpha1-acid glycoprotein. Investig New Drugs 14(2):147–151. https://doi.org/10.1007/BF00210785

    Article  CAS  Google Scholar 

  63. Rizzo S, Raia G, Del Grande M, Gasparri ML, Colombo I, Manganaro L, Papadia A, Del Grande F (2022) Body composition as a predictor of chemotherapy-related toxicity in ovarian cancer patients: a systematic review. Front Oncol 12:1057631. https://doi.org/10.3389/fonc.2022.1057631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC (2018) Skeletal muscle cutoff values for Sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep 8(1):11369. https://doi.org/10.1038/s41598-018-29825-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abe A, Yuasa M, Imai Y, Kagawa T, Mineda A, Nishimura M, Tonoiso C, Kubo A, Kawanaka T, Ikushima H, Iwasa T (2022) Extreme leanness, lower skeletal muscle quality, and loss of muscle mass during treatment are predictors of poor prognosis in cervical cancer treated with concurrent chemoradiation therapy. Int J Clin Oncol 27(5):983–991. https://doi.org/10.1007/s10147-022-02140-w

    Article  CAS  PubMed  Google Scholar 

  66. Kim IH, Choi MH, Lee IS, Hong TH, Lee MA (2021) Clinical significance of skeletal muscle density and sarcopenia in patients with pancreatic cancer undergoing first-line chemotherapy: a retrospective observational study. BMC Cancer 21(1):77. https://doi.org/10.1186/s12885-020-07753-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hertz DL, Tofthagen C, Faithfull S (2021) Predisposing factors for the development of Chemotherapy-Induced Peripheral Neuropathy (CIPN). In: Lustberg M, Loprinzi C (eds) Diagnosis, management and emerging strategies for Chemotherapy-Induced Neuropathy: a MASCC Book. Springer International Publishing, Cham, pp 19–51. https://doi.org/10.1007/978-3-030-78663-2_2

    Chapter  Google Scholar 

  68. Shachar SS, Deal AM, Weinberg M, Nyrop KA, Williams GR, Nishijima TF, Benbow JM, Muss HB (2017) Skeletal muscle measures as predictors of toxicity, hospitalization, and survival in patients with metastatic breast Cancer receiving taxane-based chemotherapy. Clin Cancer Res 23(3):658–665. https://doi.org/10.1158/1078-0432.Ccr-16-0940

    Article  CAS  PubMed  Google Scholar 

  69. Bruno KA, Sobreira da Silva MJ, Chaves GV (2021) Association of body composition with toxicity to first-line chemotherapy and three-year survival in women with ovarian adenocarcinoma. Acta Oncol 60(12):1611–1620. https://doi.org/10.1080/0284186x.2021.1983210

    Article  CAS  PubMed  Google Scholar 

  70. Sparreboom A, Wolff AC, Mathijssen RH, Chatelut E, Rowinsky EK, Verweij J, Baker SD (2007) Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J Clin Oncol 25(30):4707–4713. https://doi.org/10.1200/jco.2007.11.2938

    Article  CAS  PubMed  Google Scholar 

  71. Hertz DL, Chen L, Henry NL, Griggs JJ, Hayes DF, Derstine BA, Su GL, Wang SC, Pai MP (2022) Muscle mass affects paclitaxel systemic exposure and may inform personalized paclitaxel dosing. Br J Clin Pharmacol 88(7):3222–3229. https://doi.org/10.1111/bcp.15244

    Article  CAS  PubMed  Google Scholar 

  72. van Doorn L, Crombag MBS, Rier HN, van Vugt JLA, van Kesteren C, Bins S, Mathijssen RHJ, Levin MD, Koolen SLW (2021) The influence of body composition on the systemic exposure of Paclitaxel in Esophageal Cancer patients. Pharmaceuticals (Basel) 14(1). https://doi.org/10.3390/ph14010047

  73. Hoge RHL, Detert Oude Weme SEH, Vervenne WL, van Berlo-van de Laar IRF, van Herpen CML, Roorda L, Mathôt RAA, Jacobs MS, van Erp NP, Jansman FGA (2022) Lean body Mass and Total Body Weight Versus Body Surface Area as a determinant of Docetaxel Pharmacokinetics and Toxicity. Ther Drug Monit 44(6):755–761. https://doi.org/10.1097/ftd.0000000000001029

    Article  CAS  PubMed  Google Scholar 

  74. Guo K, Savelieff MG, Rumora AE, Alakwaa FM, Callaghan BC, Hur J, Feldman EL (2022) Plasma metabolomics and lipidomics differentiate obese individuals by Peripheral Neuropathy Status. J Clin Endocrinol Metab 107(4):1091–1109. https://doi.org/10.1210/clinem/dgab844

    Article  PubMed  Google Scholar 

  75. Muss HB, Berry DA, Cirrincione C, Budman DR, Henderson IC, Citron ML, Norton L, Winer EP, Hudis CA (2007) Toxicity of older and younger patients treated with adjuvant chemotherapy for node-positive breast cancer: the Cancer and Leukemia Group B experience. J Clin Oncol 25(24):3699–3704. https://doi.org/10.1200/jco.2007.10.9710

    Article  CAS  PubMed  Google Scholar 

  76. Lichtman SM, Hurria A, Cirrincione CT, Seidman AD, Winer E, Hudis C, Cohen HJ, Muss HB (2012) Paclitaxel efficacy and toxicity in older women with metastatic breast cancer: combined analysis of CALGB 9342 and 9840. Ann Oncol 23(3):632–638. https://doi.org/10.1093/annonc/mdr297

    Article  CAS  PubMed  Google Scholar 

  77. Minami H, Ohe Y, Niho S, Goto K, Ohmatsu H, Kubota K, Kakinuma R, Nishiwaki Y, Nokihara H, Sekine I, Saijo N, Hanada K, Ogata H (2004) Comparison of pharmacokinetics and pharmacodynamics of docetaxel and cisplatin in elderly and non-elderly patients: why is toxicity increased in elderly patients? J Clin Oncol 22(14):2901–2908. https://doi.org/10.1200/jco.2004.10.163

    Article  CAS  PubMed  Google Scholar 

  78. Mangoni AA, Jackson SH (2004) Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol 57(1):6–14. https://doi.org/10.1046/j.1365-2125.2003.02007.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fülöp T Jr., Wórum I, Csongor J, Fóris G, Leövey A (1985) Body composition in elderly people. I. determination of body composition by multiisotope method and the elimination kinetics of these isotopes in healthy elderly subjects. Gerontology 31(1):6–14. https://doi.org/10.1159/000212676

    Article  PubMed  Google Scholar 

  80. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zheng NS, Wang F, Agarwal R, Carroll RJ, Wei WQ, Berlin J, Shu XO (2021) Racial disparity in taxane-induced neutropenia among cancer patients. Cancer Med 10(19):6767–6776. https://doi.org/10.1002/cam4.4181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bayraktar S, Zhou JZ, Bassett R, Gutierrez Barrera AM, Layman RM, Valero V, Arun B (2020) Clinical outcome and toxicity from taxanes in breast cancer patients with BRCA1 and BRCA2 pathogenic germline mutations. Breast J 26(8):1572–1582. https://doi.org/10.1111/tbj.13922

    Article  CAS  PubMed  Google Scholar 

  83. Schneider BP, Li L, Radovich M, Shen F, Miller KD, Flockhart DA, Jiang G, Vance G, Gardner L, Vatta M, Bai S, Lai D, Koller D, Zhao F, O’Neill A, Smith ML, Railey E, White C, Partridge A, Sparano J, Davidson NE, Foroud T, Sledge GW Jr (2015) Genome-wide Association studies for Taxane-Induced Peripheral Neuropathy in ECOG-5103 and ECOG-1199. Clin Cancer Res 21(22):5082–5091. https://doi.org/10.1158/1078-0432.Ccr-15-0586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schneider BP, Shen F, Jiang G, O’Neill A, Radovich M, Li L, Gardner L, Lai D, Foroud T, Sparano JA, Sledge GW Jr., Miller KD (2017) Impact of Genetic Ancestry on Outcomes in ECOG-ACRIN-E5103. JCO Precis Oncol 2017. https://doi.org/10.1200/po.17.00059

  85. Tornatore KM, Meaney CJ, Attwood K, Brazeau DA, Wilding GE, Consiglio JD, Gundroo A, Chang SS, Gray V, Cooper LM, Venuto RC (2022) Race and sex associations with tacrolimus pharmacokinetics in stable kidney transplant recipients. Pharmacotherapy 42(2):94–105. https://doi.org/10.1002/phar.2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krens SD, McLeod HL, Hertz DL (2013) Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy. Pharmacogenomics 14(5):555–574. https://doi.org/10.2217/pgs.13.33

    Article  CAS  PubMed  Google Scholar 

  87. Chua KC, El-Haj N, Priotti J, Kroetz DL (2022) Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin Pharmacol Toxicol 130(Suppl 1):60–74. https://doi.org/10.1111/bcpt.13654

    Article  CAS  PubMed  Google Scholar 

  88. Chua KC, Kroetz DL (2017) Genetic advances uncover mechanisms of chemotherapy-induced peripheral neuropathy. Clin Pharmacol Ther 101(4):450–452. https://doi.org/10.1002/cpt.590

    Article  CAS  PubMed  Google Scholar 

  89. Sucheston LE, Zhao H, Yao S, Zirpoli G, Liu S, Barlow WE, Moore HC, Thomas Budd G, Hershman DL, Davis W, Ciupak GL, Stewart JA, Isaacs C, Hobday TJ, Salim M, Hortobagyi GN, Gralow JR, Livingston RB, Albain KS, Hayes DF, Ambrosone CB (2011) Genetic predictors of taxane-induced neurotoxicity in a SWOG phase III intergroup adjuvant breast cancer treatment trial (S0221). Breast Cancer Res Treat 130(3):993–1002. https://doi.org/10.1007/s10549-011-1671-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pai MP (2012) Drug dosing based on weight and body surface area: mathematical assumptions and limitations in obese adults. Pharmacotherapy 32(9):856–868. https://doi.org/10.1002/j.1875-9114.2012.01108.x

    Article  PubMed  Google Scholar 

  91. Hertz DL, Walko CM, Bridges AS, Hull JH, Herendeen J, Rollins K, Watkins PB, Dees EC (2012) Pilot study of rosiglitazone as an in vivo probe of paclitaxel exposure. Br J Clin Pharmacol 74(1):197–200. https://doi.org/10.1111/j.1365-2125.2012.04165.x

    Article  CAS  PubMed  Google Scholar 

  92. Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH (2000) The effect of an individual’s cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 6(4):1255–1258

    CAS  PubMed  Google Scholar 

  93. Soldin OP, Mattison DR (2009) Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 48(3):143–157. https://doi.org/10.2165/00003088-200948030-00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Olafuyi O, Parekh N, Wright J, Koenig J (2021) Inter-ethnic differences in pharmacokinetics-is there more that unites than divides? Pharmacol Res Perspect 9(6):e00890. https://doi.org/10.1002/prp2.890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Basch E, Deal AM, Dueck AC, Scher HI, Kris MG, Hudis C, Schrag D (2017) Overall survival results of a trial assessing patient-reported outcomes for Symptom Monitoring during Routine Cancer Treatment. JAMA 318(2):197–198. https://doi.org/10.1001/jama.2017.7156

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sharma MR, Mehrotra S, Gray E, Wu K, Barry WT, Hudis C, Winer EP, Lyss AP, Toppmeyer DL, Moreno-Aspitia A, Lad TE, Velasco M, Overmoyer B, Rugo HS, Ratain MJ, Gobburu JV (2020) Personalized Management of Chemotherapy-Induced Peripheral Neuropathy based on a patient reported outcome: CALGB 40502 (Alliance). J Clin Pharmacol 60(4):444–452. https://doi.org/10.1002/jcph.1559

    Article  CAS  PubMed  Google Scholar 

  97. Wu W, Liu X, Chaftari P, Cruz Carreras MT, Gonzalez C, Viets-Upchurch J, Merriman K, Tu SM, Dalal S, Yeung SC (2015) Association of body composition with outcome of docetaxel chemotherapy in metastatic prostate cancer: a retrospective review. PLoS ONE 10(3):e0122047. https://doi.org/10.1371/journal.pone.0122047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li JH, Zhang XM, Bian XJ, Gu WJ, Wan FN, Dai B, Ye DW (2023) Relationships of body composition and adipocytokines with outcomes in metastatic castration-resistant prostate cancer patients receiving docetaxel chemotherapy. Asian J Androl 25(4):520–527. https://doi.org/10.4103/aja2022104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Haojie Zhu and Antoinette Coe for their help and advice while writing the manuscript.

Funding

This work was supported by grants from the National Cancer Institute of the National Institutes of Health (1R37CA277043-01 to D.L.H).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and Y.C. wrote the main manuscript text and Y.S. prepared figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Daniel L. Hertz.

Ethics declarations

Conflict of interest

The authors declare no relevant conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Cheng, Y. & Hertz, D.L. Using maximum plasma concentration (Cmax) to personalize taxane treatment and reduce toxicity. Cancer Chemother Pharmacol (2024). https://doi.org/10.1007/s00280-024-04677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00280-024-04677-1

Keywords

Navigation