Skip to main content

Advertisement

Log in

Species-specific optimization of PEG~SN-38 prodrug pharmacokinetics and antitumor effects in a triple-negative BRCA1-deficient xenograft

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Optimal efficacy of a macromolecular prodrug requires balancing the rate of drug release with the rate of prodrug elimination. Since circulating macromolecules have different elimination rates in different species, a prodrug optimal for one species will likely not be for another. The objectives of this work were (a) to develop an approach to optimize pharmacokinetics of a PEG~SN-38 prodrug in a particular species, (b) to use the approach to predict the pharmacokinetics of various prodrugs of SN-38 in the mouse and human, and (c) to develop a PEG~SN-38 conjugate that is optimized for mouse tumor models.

Methods

We developed models that describe the pharmacokinetics of a drug released from a prodrug by the relationship between the rates of drug release and elimination of the prodrug. We tested the model by varying the release rate of SN-38 from PEG~SN-38 conjugates in the setting of a constant prodrug elimination rate in the mouse. Finally, we tested the antitumor efficacy of a PEG~SN-38 optimized for the mouse.

Results

Optimization of a PEG~SN-38 prodrug was achieved by adjusting the rate of SN-38 release such that the ratio of t1/2,β of released SN-38 to the t1/2 of prodrug elimination was 0.2–0.8. Using this approach, we could rationalize the efficacy of previous PEGylated SN-38 prodrugs in the mouse and human. Finally, a mouse-optimized PEG~SN-38 showed remarkable antitumor activity in BRCA1-deficient MX-1 xenografts; a single dose gave tumor regression, suppression, and shrinkage of massive tumors.

Conclusions

The efficacy of a macromolecular prodrug can be optimized for a given species by balancing the rate of drug release from the carrier with the rate of prodrug elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Doses of PEG~SN-38 refer to the amount of conjugated SN-38 delivered.

References

  1. Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7(8):2182–2194

    CAS  PubMed  Google Scholar 

  2. Slatter JG, Schaaf LJ, Sams JP, Feenstra KL, Johnson MG, Bombardt PA, Cathcart KS, Verburg MT, Pearson LK, Compton LD, Miller LL, Baker DS, Pesheck CV, Lord RS 3rd (2000) Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos 28(4):423–433

    CAS  PubMed  Google Scholar 

  3. Santi DV, Schneider EL, Ashley GW (2014) Macromolecular prodrug that provides the irinotecan (CPT-11) active-metabolite SN-38 with ultralong half-life, low C(max), and low glucuronide formation. J Med Chem 57(6):2303–2314. https://doi.org/10.1021/jm401644v

    Article  CAS  PubMed  Google Scholar 

  4. Maeda H, Tsukigawa K, Fang J (2016) A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects. Microcirculation 23(3):173–182. https://doi.org/10.1111/micc.12228

    Article  CAS  PubMed  Google Scholar 

  5. Zander SA, Sol W, Greenberger L, Zhang Y, van Tellingen O, Jonkers J, Borst P, Rottenberg S (2012) EZN-2208 (PEG-SN38) overcomes ABCG2-mediated topotecan resistance in BRCA1-deficient mouse mammary tumors. PLoS One 7(9):e45248. https://doi.org/10.1371/journal.pone.0045248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sapra P, Kraft P, Mehlig M, Malaby J, Zhao H, Greenberger LM, Horak ID (2009) Marked therapeutic efficacy of a novel polyethylene glycol-SN38 conjugate, EZN-2208, in xenograft models of B-cell non-Hodgkin’s lymphoma. Haematologica 94(10):1456–1459. https://doi.org/10.3324/haematol.2009.008276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garrett CR, Bekaii-Saab TS, Ryan T, Fisher GA, Clive S, Kavan P, Shacham-Shmueli E, Buchbinder A, Goldberg RM (2013) Randomized phase 2 study of pegylated SN-38 (EZN-2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer 119(24):4223–4230. https://doi.org/10.1002/cncr.28358

    Article  CAS  PubMed  Google Scholar 

  8. Matsumura Y (2011) Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev 63(3):184–192. https://doi.org/10.1016/j.addr.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  9. Ri M, Suzuki K, Iida S, Hatake K, Chou T, Taniwaki M, Watanabe N, Tsukamoto T (2017) A phase I/II study for dose-finding, and to investigate the safety, pharmacokinetics and preliminary efficacy of NK012, an SN-38-incorporating macromolecular polymeric micelle, in patients with multiple myeloma. Intern Med. https://doi.org/10.2169/internalmedicine.9567-17

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoch U, Staschen CM, Johnson RK, Eldon MA (2014) Nonclinical pharmacokinetics and activity of etirinotecan pegol (NKTR-102), a long-acting topoisomerase 1 inhibitor, in multiple cancer models. Cancer Chemother Pharmacol 74(6):1125–1137. https://doi.org/10.1007/s00280-014-2577-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jameson GS, Hamm JT, Weiss GJ, Alemany C, Anthony S, Basche M, Ramanathan RK, Borad MJ, Tibes R, Cohn A, Hinshaw I, Jotte R, Rosen LS, Hoch U, Eldon MA, Medve R, Schroeder K, White E, Von Hoff DD (2013) A multicenter, phase I, dose-escalation study to assess the safety, tolerability, and pharmacokinetics of etirinotecan pegol in patients with refractory solid tumors. Clin Cancer Res 19(1):268–278. https://doi.org/10.1158/1078-0432.CCR-12-1201

    Article  CAS  PubMed  Google Scholar 

  12. Santi DV, Schneider EL, Reid R, Robinson L, Ashley GW (2012) Predictable and tunable half-life extension of therapeutic agents by controlled chemical release from macromolecular conjugates. Proc Natl Acad Sci USA 109(16):6211–6216. https://doi.org/10.1073/pnas.1117147109

    Article  PubMed  Google Scholar 

  13. Henise J, Hearn BR, Ashley GW, Santi DV (2015) Biodegradable tetra-PEG hydrogels as carriers for a releasable drug delivery system. Bioconjug Chem 26(2):270–278. https://doi.org/10.1021/bc5005476

    Article  CAS  PubMed  Google Scholar 

  14. Schneider EL, Robinson L, Reid R, Ashley GW, Santi DV (2013) beta-eliminative releasable linkers adapted for bioconjugation of macromolecules to phenols. Bioconjug Chem 24(12):1990–1997. https://doi.org/10.1021/bc4002882

    Article  CAS  PubMed  Google Scholar 

  15. Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C, Gorlick R, Kolb EA, Zhang W, Lock R, Carol H, Tajbakhsh M, Reynolds CP, Maris JM, Courtright J, Keir ST, Friedman HS, Stopford C, Zeidner J, Wu J, Liu T, Billups CA, Khan J, Ansher S, Zhang J, Smith MA (2007) The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 49(7):928–940. https://doi.org/10.1002/pbc.21078

    Article  PubMed  Google Scholar 

  16. Sapra P, Zhao H, Mehlig M, Malaby J, Kraft P, Longley C, Greenberger LM, Horak ID (2008) Novel delivery of SN38 markedly inhibits tumor growth in xenografts, including a camptothecin-11-refractory model. Clin Cancer Res 14(6):1888–1896. https://doi.org/10.1158/1078-0432.CCR-07-4456

    Article  CAS  PubMed  Google Scholar 

  17. Kurzrock R, Goel S, Wheler J, Hong D, Fu S, Rezai K, Morgan-Linnell SK, Urien S, Mani S, Chaudhary I, Ghalib MH, Buchbinder A, Lokiec F, Mulcahy M (2012) Safety, pharmacokinetics, and activity of EZN-2208, a novel conjugate of polyethylene glycol and SN38, in patients with advanced malignancies. Cancer 118(24):6144–6151. https://doi.org/10.1002/cncr.27647

    Article  CAS  PubMed  Google Scholar 

  18. Koizumi F, Kitagawa M, Negishi T, Onda T, Matsumoto S, Hamaguchi T, Matsumura Y (2006) Novel SN-38-incorporating polymeric micelles, NK012, eradicate vascular endothelial growth factor-secreting bulky tumors. Cancer Res 66(20):10048–10056. https://doi.org/10.1158/0008-5472.CAN-06-1605

    Article  CAS  PubMed  Google Scholar 

  19. Patnaik A, Papadopoulos KP, Tolcher AW, Beeram M, Urien S, Schaaf LJ, Tahiri S, Bekaii-Saab T, Lokiec FM, Rezai K, Buchbinder A (2013) Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother Pharmacol 71(6):1499–1506. https://doi.org/10.1007/s00280-013-2149-2

    Article  CAS  PubMed  Google Scholar 

  20. Masi G, Falcone A, Di Paolo A, Allegrini G, Danesi R, Barbara C, Cupini S, Del Tacca M (2004) A phase I and pharmacokinetic study of irinotecan given as a 7-day continuous infusion in metastatic colorectal cancer patients pretreated with 5-fluorouracil or raltitrexed. Clin Cancer Res 10(5):1657–1663

    Article  CAS  Google Scholar 

  21. Rothenberg ML, Kuhn JG, Burris HA 3rd, Nelson J, Eckardt JR, Tristan-Morales M, Hilsenbeck SG, Weiss GR, Smith LS, Rodriguez GI et al (1993) Phase I and pharmacokinetic trial of weekly CPT-11. J Clin Oncol 11(11):2194–2204. https://doi.org/10.1200/JCO.1993.11.11.2194

    Article  CAS  PubMed  Google Scholar 

  22. Rothenberg ML, Kuhn JG, Schaaf LJ, Rodriguez GI, Eckhardt SG, Villalona-Calero MA, Rinaldi DA, Hammond LA, Hodges S, Sharma A, Elfring GL, Petit RG, Locker PK, Miller LL, von Hoff DD (2001) Phase I dose-finding and pharmacokinetic trial of irinotecan (CPT-11) administered every two weeks. Ann Oncol 12(11):1631–1641

    Article  CAS  Google Scholar 

  23. Rouits E, Guichard S, Canal P, Chatelut E (2002) Non-linear pharmacokinetics of irinotecan in mice. Anticancer Drugs 13(6):631–635

    Article  CAS  Google Scholar 

  24. Stewart CF, Zamboni WC, Crom WR, Houghton PJ (1997) Disposition of irinotecan and SN-38 following oral and intravenous irinotecan dosing in mice. Cancer Chemother Pharmacol 40(3):259–265. https://doi.org/10.1007/s002800050656

    Article  CAS  PubMed  Google Scholar 

  25. Xie R, Mathijssen RH, Sparreboom A, Verweij J, Karlsson MO (2002) Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther 72(3):265–275. https://doi.org/10.1067/mcp.2002.126741

    Article  CAS  PubMed  Google Scholar 

  26. Zhao H, Rubio B, Sapra P, Wu D, Reddy P, Sai P, Martinez A, Gao Y, Lozanguiez Y, Longley C, Greenberger LM, Horak ID (2008) Novel prodrugs of SN38 using multiarm poly(ethylene glycol) linkers. Bioconjug Chem 19(4):849–859. https://doi.org/10.1021/bc700333s

    Article  CAS  PubMed  Google Scholar 

  27. Houghton PJ, Cheshire PJ, Hallman JD 2nd, Lutz L, Friedman HS, Danks MK, Houghton JA (1995) Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol 36(5):393–403. https://doi.org/10.1007/BF00686188

    Article  CAS  PubMed  Google Scholar 

  28. Guichard S, Montazeri A, Chatelut E, Hennebelle I, Bugat R, Canal P (2001) Schedule-dependent activity of topotecan in OVCAR-3 ovarian carcinoma xenograft: pharmacokinetic and pharmacodynamic evaluation. Clin Cancer Res 7(10):3222–3228

    CAS  PubMed  Google Scholar 

  29. Morton CL, Wierdl M, Oliver L, Ma MK, Danks MK, Stewart CF, Eiseman JL, Potter PM (2000) Activation of CPT-11 in mice: identification and analysis of a highly effective plasma esterase. Cancer Res 60(15):4206–4210

    CAS  PubMed  Google Scholar 

  30. Morton CL, Iacono L, Hyatt JL, Taylor KR, Cheshire PJ, Houghton PJ, Danks MK, Stewart CF, Potter PM (2005) Activation and antitumor activity of CPT-11 in plasma esterase-deficient mice. Cancer Chemother Pharmacol 56(6):629–636. https://doi.org/10.1007/s00280-005-1027-y

    Article  CAS  PubMed  Google Scholar 

  31. Chabot GG (1997) Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 33(4):245–259. https://doi.org/10.2165/00003088-199733040-00001

    Article  CAS  PubMed  Google Scholar 

  32. Ocean AJ, Starodub AN, Bardia A, Vahdat LT, Isakoff SJ, Guarino M, Messersmith WA, Picozzi VJ, Mayer IA, Wegener WA, Maliakal P, Govindan SV, Sharkey RM, Goldenberg DM (2017) Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: safety and pharmacokinetics. Cancer 123(19):3843–3854. https://doi.org/10.1002/cncr.30789

    Article  CAS  PubMed  Google Scholar 

  33. Boerner JL, Nechiporchik N, Mueller KL, Polin L, Heilbrun L, Boerner SA, Zoratti GL, Stark K, LoRusso PM, Burger A (2015) Protein expression of DNA damage repair proteins dictates response to topoisomerase and PARP inhibitors in triple-negative breast cancer. PLoS One 10(3):e0119614. https://doi.org/10.1371/journal.pone.0119614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE, Ashworth A (2013) BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19(18):5003–5015. https://doi.org/10.1158/1078-0432.CCR-13-1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Julia Malato, Fernando Salangsang, Paul Phojanakong for performing the xenograft studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel. V. Santi.

Ethics declarations

Conflict of interest

Shaun D. Fontaine, Ralph Reid, Gary W. Ashley, and Daniel V. Santi are all employees and shareholders of ProLynx LLC. Byron Hann is an employee of University of California, San Francisco.

Research involving animals

All studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontaine, S.D., Hann, B., Reid, R. et al. Species-specific optimization of PEG~SN-38 prodrug pharmacokinetics and antitumor effects in a triple-negative BRCA1-deficient xenograft. Cancer Chemother Pharmacol 84, 729–738 (2019). https://doi.org/10.1007/s00280-019-03903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03903-5

Keywords

Navigation