Skip to main content

Advertisement

Log in

In vitro and in vivo evaluation of dasatinib and imatinib on physiological parameters of pulmonary arterial hypertension

Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary arterial hypertension (PAH) results from occlusion or vasoconstriction of pulmonary vessels, leading to progressive right ventricular failure. Dasatinib, a BCR-ABL1 tyrosine kinase inhibitor (TKI) approved for the treatment of chronic myelogenous leukemia, has been associated with PAH. In contrast, the BCR-ABL1 TKI imatinib has demonstrated anti-vasoproliferative properties and has been investigated as a potential treatment for PAH. Here we describe studies evaluating the effects of dasatinib and imatinib on cardiovascular and pulmonary functions to understand the reported differential consequences of the two TKIs in a clinical setting.

Methods

The direct effects of dasatinib and imatinib were explored in vivo to investigate possible mechanisms of dasatinib-induced PAH. In addition, effects of dasatinib and imatinib on PAH-related mediators were evaluated in vitro.

Results

In rats, both TKIs increased plasma nitric oxide (NO), did not induce PAH-related structural or molecular changes in PA or lungs, and did not alter hemodynamic lung function compared with positive controls. Similarly, in the pulmonary artery endothelial cells and smooth muscle cells co-culture model, imatinib and dasatinib increased NO and decreased endothelin-1 protein and mRNA.

Conclusions

The results of these studies indicated that dasatinib did not induce physiological changes or molecular signatures consistent with PAH when compared to positive controls. Instead, dasatinib induced changes consistent with imatinib. Both dasatinib and imatinib induced biochemical and structural changes consistent with a protective effect for PAH. These data suggest that other factors of unclear etiology contributed to the development of PAH in patients treated with dasatinib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baliga RS, MacAllister RJ, Hobbs AJ (2011) New perspectives for the treatment of pulmonary hypertension. Br J Pharmacol 163(1):125–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D34–D41

    Article  PubMed  Google Scholar 

  3. Galie N, Manes A, Branzi A (2004) Evaluation of pulmonary arterial hypertension. Curr Opin Cardiol 19(6):575–581

    Article  PubMed  Google Scholar 

  4. Levin YD, White RJ (2011) Novel therapeutic approaches in pulmonary arterial hypertension: focus on tadalafil. Drugs Today (Barc) 47 (2):145–156

    Article  CAS  Google Scholar 

  5. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G, Guidelines ESCCfP (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30(20):2493–2537

    Article  PubMed  Google Scholar 

  6. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43(12 Suppl S):13 S–24 S

    Article  CAS  Google Scholar 

  7. O’Callaghan DS, Savale L, Montani D, Jais X, Sitbon O, Simonneau G, Humbert M (2011) Treatment of pulmonary arterial hypertension with targeted therapies. Nat Rev Cardiol 8(9):526–538

    Article  PubMed  Google Scholar 

  8. Price LC, Wort SJ, Perros F, Dorfmuller P, Huertas A, Montani D, Cohen-Kaminsky S, Humbert M (2012) Inflammation in pulmonary arterial hypertension. Chest 141(1):210–221

    Article  CAS  PubMed  Google Scholar 

  9. de Jesus Perez V, Kudelko K, Snook S, Zamanian RT (2011) Drugs and toxins-associated pulmonary arterial hypertension: lessons learned and challenges ahead. Int J Clin Pract Suppl (169):8–10

    Google Scholar 

  10. Abenhaim L, Moride Y, Brenot F, Rich S, Benichou J, Kurz X, Higenbottam T, Oakley C, Wouters E, Aubier M, Simonneau G, Begaud B (1996) Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med 335(9):609–616

    Article  CAS  PubMed  Google Scholar 

  11. Hebert VY, Crenshaw BL, Romanoff RL, Ekshyyan VP, Dugas TR (2004) Effects of HIV drug combinations on endothelin-1 and vascular cell proliferation. Cardiovasc Toxicol 4(2):117–131

    Article  CAS  PubMed  Google Scholar 

  12. Talwar A, Sarkar P, Rosen MJ (2009) Pulmonary arterial hypertension in human immunodeficiency virus infection. Postgrad Med 121(5):56–67

    Article  PubMed  Google Scholar 

  13. Ledinek AH, Jazbec SS, Drinovec I, Rot U (2009) Pulmonary arterial hypertension associated with interferon beta treatment for multiple sclerosis: a case report. Mult Scler 15(7):885–886

    Article  CAS  PubMed  Google Scholar 

  14. Dhillon S, Kaker A, Dosanjh A, Japra D, Vanthiel DH (2010) Irreversible pulmonary hypertension associated with the use of interferon alpha for chronic hepatitis C. Dig Dis Sci 55(6):1785–1790

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fruehauf S, Steiger S, Topaly J, Ho AD (2001) Pulmonary artery hypertension during interferon-alpha therapy for chronic myelogenous leukemia. Ann Hematol 80(5):308–310

    Article  CAS  PubMed  Google Scholar 

  16. Shah NP, Wallis N, Farber HW, Mauro MJ, Wolf RA, Mattei D, Guha M, Rea D, Peacock A (2015) Clinical features of pulmonary arterial hypertension in patients receiving dasatinib. Am J Hematol 90(11):1060–1064

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Chai H-T, Lin PH, Yao Q, Chen C (2009) Roles and mechanisms of human immunodeficiency virus protease inhibitor Ritonavir and other anti-human immunodeficiency virus drugs in endothelial dysfunction of porcine pulmonary arteries and human pulmonary artery endothelial cells. Am J Pathol 174(3):771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, Kaupe I, Bennett KL, Valent P, Colinge J, Kocher T, Superti-Furga G (2007) Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110(12):4055–4063

    Article  CAS  PubMed  Google Scholar 

  19. Mattei D, Feola M, Orzan F, Mordini N, Rapezzi D, Gallamini A (2009) Reversible dasatinib-induced pulmonary arterial hypertension and right ventricle failure in a previously allografted CML patient. Bone Marrow Transplant 43(12):967–968

    Article  CAS  PubMed  Google Scholar 

  20. Rasheed W, Flaim B, Seymour JF (2009) Reversible severe pulmonary hypertension secondary to dasatinib in a patient with chronic myeloid leukemia. Leuk Res 33(6):861–864

    Article  PubMed  Google Scholar 

  21. Hennigs JK, Keller G, Baumann HJ, Honecker F, Kluge S, Bokemeyer C, Brummendorf TH, Klose H (2011) Multi tyrosine kinase inhibitor dasatinib as novel cause of severe pre-capillary pulmonary hypertension? BMC Pulm Med 11:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dumitrescu D, Seck C, ten Freyhaus H, Gerhardt F, Erdmann E, Rosenkranz S (2011) Fully reversible pulmonary arterial hypertension associated with dasatinib treatment for chronic myeloid leukaemia. Eur Respir J 38(1):218–220

    Article  CAS  PubMed  Google Scholar 

  23. Philibert L, Cazorla C, Peyrière H, Mikulski M, Guillemin V, Pinzani-Harter V (2011) Pulmonary arterial hypertension induced by dasatinib: positive reintroduction with nilotinib. Fundam Clin Pharmacol 25(Suppl 1):Abstract 476

    Google Scholar 

  24. Montani D, Bergot E, Gunther S, Savale L, Bergeron A, Bourdin A, Bouvaist H, Canuet M, Pison C, Macro M, Poubeau P, Girerd B, Natali D, Guignabert C, Perros F, O’Callaghan DS, Jais X, Tubert-Bitter P, Zalcman G, Sitbon O, Simonneau G, Humbert M (2012) Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 125(17):2128–2137

    Article  CAS  PubMed  Google Scholar 

  25. Orlandi EM, Rocca B, Pazzano AS, Ghio S (2012) Reversible pulmonary arterial hypertension likely related to long-term, low-dose dasatinib treatment for chronic myeloid leukaemia. Leuk Res 36(1):e4–e6

    Article  PubMed  Google Scholar 

  26. Sano M, Saotome M, Urushida T, Katoh H, Satoh H, Ohnishi K, Hayashi H (2012) Pulmonary arterial hypertension caused by treatment with dasatinib for chronic myeloid leukemia—critical alert. Intern Med 51(17):2337–2340

    Article  CAS  PubMed  Google Scholar 

  27. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115(10):2811–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pullamsetti SS, Berghausen EM, Dabral S, Tretyn A, Butrous E, Savai R, Butrous G, Dahal BK, Brandes RP, Ghofrani HA, Weissmann N, Grimminger F, Seeger W, Rosenkranz S, Schermuly RT (2012) Role of Src tyrosine kinases in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 32(6):1354–1365

    Article  CAS  PubMed  Google Scholar 

  29. Guignabert C, Phan C, Seferian A, Huertas A, Tu L, Thuillet R, Sattler C, Le Hiress M, Tamura Y, Jutant EM, Chaumais MC, Bouchet S, Maneglier B, Molimard M, Rousselot P, Sitbon O, Simonneau G, Montani D, Humbert M (2016) Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest 126(9):3207–3218

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ghofrani HA, Morrell NW, Hoeper MM, Olschewski H, Peacock AJ, Barst RJ, Shapiro S, Golpon H, Toshner M, Grimminger F, Pascoe S (2010) Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am J Respir Crit Care Med 182:1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoeper MM, Barst RJ, Bourge RC, Feldman J, Frost AE, Galié N, Gómez-Sánchez MA, Grimminger F, Grünig E, Hassoun PM, Morrell NW, Peacock AJ, Satoh T, Simonneau G, Tapson VF, Torres F, Lawrence D, Quinn DA, Ghofrani HA (2013) Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation 127:1128–1138

    Article  CAS  PubMed  Google Scholar 

  32. Al-Naamani N, Roberts KE, Hill NS, Preston IR (2014) Imatinib as rescue therapy in a patient with pulmonary hypertension associated with Gaucher disease. Chest 146:e81–e83

    Article  PubMed  Google Scholar 

  33. Efficacy, safety, tolerability and pharmacokinetics (pk) of nilotinib (AMN107) in pulmonary arterial hypertension (PAH). http://www.clinicaltrials.gov/ct2/show/NCT01179737. Accessed April 2014

  34. An X, Tiwari AK, Sun Y, Ding PR, Ashby CR Jr, Chen ZS (2010) BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res 34(10):1255–1268

    Article  CAS  PubMed  Google Scholar 

  35. Salih J, Hilpert J, Placke T, Grunebach F, Steinle A, Salih HR, Krusch M (2010) The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer 127(9):2119–2128

    Article  CAS  PubMed  Google Scholar 

  36. Luo FR, Yang Z, Camuso A, Smykla R, McGlinchey K, Fager K, Flefleh C, Castaneda S, Inigo I, Kan D, Wen M-L, Kramer R, Blackwood-Chirchir A, Lee FY (2006) Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res 12(23):7180–7186

    Article  CAS  PubMed  Google Scholar 

  37. Wolff NC, Ilaria RL (2001) Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 98(9):2808–2816

    Article  CAS  PubMed  Google Scholar 

  38. Ormiston ML, Deng Y, Rundle N, Bendjelloul F, Tsoporis JN, Parker TG, Stewart DJ, Courtman DW (2013) A lymphocyte-dependent mode of action for imatinib mesylate in experimental pulmonary hypertension. Am J Pathol 182(5):1541–1551

    Article  CAS  PubMed  Google Scholar 

  39. Sun C-K, Lee F-Y, Sheu J-J, Yuen C-M, Chua S, Chung S-Y, Chai H-T, Chen Y-T, Kao Y-H, Chang L-T, Yip H-K (2009) Early combined treatment with cilostazol and bone marrow-derived endothelial progenitor cells markedly attenuates pulmonary arterial hypertension in rats. J Pharmacol Exp Ther 330(3):718–726

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Guo Y, Chen Y, Wang Y, You Y, Yang Q, Weng X, Li Q, Zhu X, Zhou B, Liu X, Gong Z, Zhang R (2015) Establishment of an interleukin-1b-induced inflammation-activated endothelial cell-smooth muscle cell-mononuclear cell co-culture model and evaluation of the anti-inflammatory effects of tanshinone IIA on atherosclerosis. Mol Med Rep 12:1665–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Acker SN, Seedorf GJ, Abman SH, Nozik-Grayck E, Kuhn K, Partrick DA, Gien J (2015) Altered pulmonary artery endothelial-smooth muscle cell interactions in experimental congenital diaphragmatic hernia. Pediatr Res 77:511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pirvulescu MM, Gan AM, Stan D, Simion V, Calin M, Butoi E, Manduteanu I (2014) Subendotherlial resistin enhances monocyte transmigration in a co-culture of human endothelial and smooth muscle cells by mechanisms involving fractalkine, MCP-1 and activation of TLR4 and Gi/o proteins signaling. Int J Biochem Cell Biol 50:29–37

    Article  CAS  PubMed  Google Scholar 

  43. Bristol-Myers Squibb C (2016) Sprycel (dasatinib) prescribing information. Bristol-Myers Squibb C, Princeton

    Google Scholar 

  44. Novartis PSA (2015) Gleevec (imatinib) prescribing information. Novartis PSA, Basel

    Google Scholar 

  45. Nagaraj C, Tang B, Balint Z, Wygrecka M, Hrzenjak A, Kwapiszewska G, Stacher E, Lindenmann J, Weir EK, Olschewski H, Olschewski A (2013) Src tyrosine kinase is crucial for potassium channel function in human pulmonary arteries. Eur Respir J 41(1):85–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Professional medical writing support was provided by Beverly E. Barton, PhD, of StemScientific, an Ashfield Company, funded by Bristol-Myers Squibb. The authors thank Dr Dezhi Xing and Mr George Thalody for their contributions to the preclinical experiments.

Author contributions

All authors provided guidance on the analysis and interpretation of the results, contributed to the drafting and critical review of the manuscript, and provided final approval for submission. NW provided clinical input; JW provided the histopathological evaluations; MG, JH, JL, DS, RTB, MG, TS, and BB helped design and interpret the preclinical experiments; JH, JL, and BB performed the preclinical experiments; DS, NW, and RTB analyzed the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bethany Baumgart.

Ethics declarations

Funding

This study was funded by Bristol-Myers Squibb.

Conflict of interest

The authors take full responsibility for the content of this publication and confirm that it reflects their viewpoint and expertise. The authors did not receive financial compensation for authoring the manuscript. Bethany Baumgart, James Hennan, Julia Li, Michael Graziano, Thomas Sanderson, and Roderick Todd Bunch are employees of Bristol-Myers Squibb. James Hennan, Jochen Woicke, Michael Graziano, Nicola Wallis, Thomas Sanderson, and Roderick Todd Bunch received equity from Bristol-Myers Squibb as part of employee compensation. Mausumee Guha, Damir Simic, Jochen Woicke, and Nicola Wallis were employees of Bristol-Myers Squibb at the time the study was conducted and data analyzed.

Research involving animals

Animal studies were conducted in compliance with the USDA Animal Welfare Act and were approved by the Institutional Animal Care and Use Committee.

Additional information

B. Baumgart and M. Guha contributed equally to this work.

M. Guha, J. Woicke, D. Simic and N. Wallis: Employee of Bristol-Myers Squibb at the time the study was conducted and data analyzed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 KB)

Supplementary material 2 (PS 2457 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgart, B., Guha, M., Hennan, J. et al. In vitro and in vivo evaluation of dasatinib and imatinib on physiological parameters of pulmonary arterial hypertension. Cancer Chemother Pharmacol 79, 711–723 (2017). https://doi.org/10.1007/s00280-017-3264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3264-2

Keywords

Navigation