Skip to main content

Targeting of Platelet-Derived Growth Factor Signaling in Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Pharmacotherapy of Pulmonary Hypertension

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 218))

Abstract

Despite recent advances in the management of patients with pulmonary arterial hypertension (PAH), this disease remains a devastating condition with limited survival. While the current therapies primarily target the vasoconstrictor/vasodilator imbalance in the pulmonary circulation, there is currently no cure for PAH, and pulmonary vascular remodeling—representing the underlying cause of the disease—is only modestly affected. Hence, novel therapeutic approaches directly targeting the vascular remodeling process are warranted. Recent studies provided compelling evidence that peptide growth factors, which elicit their signals via receptor tyrosine kinases, are important contributors to the development and progression of PAH. In particular, platelet-derived growth factor (PDGF) is a strong mitogen for pulmonary vascular smooth muscle cells and protects these cells from apoptosis, thus representing an important mediator of pulmonary vascular remodeling. PDGF ligand and receptors are upregulated in PAH, and experimental studies have shown that inhibition of PDGF receptor signaling by pharmacological or genetic approaches prevents the development of PAH in animal models and is even able to reverse pulmonary vascular remodeling once it has been established. Consistently, results from phase II and phase III clinical trials indicate that the tyrosine kinase inhibitor imatinib mesylate, which potently inhibits the PDGF receptor, is effective in improving exercise capacity and pulmonary hemodynamics as add-on therapy in patients with severe PAH (i.e., pulmonary vascular resistance >800 dynes s cm−5). Future studies will evaluate the long-term clinical efficacy and safety of imatinib, including patients with less impaired hemodynamics. Based on the current knowledge, targeting of PDGFR signaling is likely to become an anti-proliferative treatment option for patients with PAH and has the potential to at least partially correct the pathology of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe J, Deguchi J, Takuwa Y et al (1998) Tyrosine phosphorylation of platelet derived growth factor beta receptors in coronary artery lesions: implications for vascular remodelling after directional coronary atherectomy and unstable angina pectoris. Heart 79:400–406

    PubMed  CAS  Google Scholar 

  • Abe K, Toba M, Alzoubi A, Koubsky K, Ito M, Ota H, Gairhe S, Gerthoffer WT, Fagan KA, McMurtry IF, Oka M (2011) Tyrosine kinase inhibitors are potent acute pulmonary vasodilators in rats. Am J Respir Cell Mol Biol 45:804–808

    Article  PubMed  CAS  Google Scholar 

  • Arcot SS, Lipke DW, Gillespie MN, Olson JW (1993) Alterations of growth factor transcripts in rat lungs during development of monocrotaline-induced pulmonary hypertension. Biochem Pharmacol 46:1086–1091

    Article  PubMed  CAS  Google Scholar 

  • Atallah E, Durand JB, Kantarijan H, Cortes J (2007) Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood 110:1233–1237

    Article  PubMed  CAS  Google Scholar 

  • Badesch DB, Abman SH, Simonneau G et al (2007) Medical therapy for pulmonary arterial hypertension. Updated ACCP evidence-based clinical practice guidelines. Chest 131:1917–1928

    Article  PubMed  Google Scholar 

  • Badesch DB, Champion HC, Sanchez MA et al (2009) Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54(Suppl S):55–66

    Article  Google Scholar 

  • Balasubramaniam V, Le Cras TD, Ivy DD, Grover TR, Kinsella JP, Abman SH (2003) Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 284:L826–L833

    Article  PubMed  CAS  Google Scholar 

  • Baroni SS, Santillo M, Bevilacqua F, Luchetti M, Spadoni T, Mancini M, Fraticelli P, Sambo P, Funaro A, Kazlauskas A, Avvedimento EV, Gabrielli A (2006) Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 354:2667–2676

    Article  PubMed  CAS  Google Scholar 

  • Barst RJ, Rubin LJ et al (1996) A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 334:296–302

    Article  PubMed  CAS  Google Scholar 

  • Barst RJ, Gibbs SR, Ghofrani HA et al (2009) Updated evidence-based treatment algorithm in pulmonary arterial hypertension. J Am Coll Cardiol 54(Suppl S):S78–S84

    Article  PubMed  CAS  Google Scholar 

  • Baselga J (2006) Targeting tyrosine kinases in cancer: the second wave. Science 312:1175–1178

    Article  PubMed  CAS  Google Scholar 

  • Bäumer AT, Ten Freyhaus H, Sauer H et al (2008) PI3 kinase-dependent membrane recruitment of rac-1 and p47phox is critical for alpha PDGF receptor-induced production of reactive oxygen species. J Biol Chem 283:7864–7876

    Article  PubMed  CAS  Google Scholar 

  • Benza RL, Miller DP, Gomberg-Maitland M et al (2010) Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122:164–172

    Article  PubMed  Google Scholar 

  • Berghausen E, Janssen W, Vantler M, Zimmermann T, ten Freyhaus H, Zhao JJ, Schermuly RT, Rosenkranz S (2011) The PI 3-kinase isoform p110alpha is essential for growth factor-induced vascular remodeling in pulmonary hypertension. Eur Heart J 32(Suppl):3072 (Abstract)

    Google Scholar 

  • Bergsten E, Uutela M, Li X et al (2001) PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor. Nat Cell Biol 3:512–516

    Article  PubMed  CAS  Google Scholar 

  • Caglayan E, Vantler M, Leppänen O et al (2011) Disruption of PDGF-dependent PI 3-kinase and PLCγ activity abolishes vascular smooth muscle cell proliferation and migration and attenuates neointima formation in vivo. J Am Coll Cardiol 57:2527–2538

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Han M, Luo L, Song W, Zhou X (1996) Increased expression of pdgf and c-myc genes in lungs and pulmonary arteries of pulmonary hypertensive rats induced by hypoxia. Chin Med Sci J 11:152–156

    PubMed  CAS  Google Scholar 

  • Chen SJ, Chen YF et al (1995) Endothelin-receptor antagonist bosentan prevents and reverses hypoxic pulmonary hypertension in rats. J Appl Physiol 79:2122–2131

    PubMed  CAS  Google Scholar 

  • Cheng H, Force T (2010) Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 106:21–34

    Article  PubMed  CAS  Google Scholar 

  • Chockalingam A, Gnanavelu G, Venkatesan S et al (2005) Efficacy and optimal dose of sildenafil in primary pulmonary hypertension. Int J Cardiol 99:91–95

    Article  PubMed  Google Scholar 

  • Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J (1994) PDGF- and insulin-dependent pp70S6K activation mediated by phosphatidylinositol-3-OH-kinase. Nature 370:71–75

    Article  PubMed  CAS  Google Scholar 

  • Cohen MH, Johnson JR, Pazdur R (2005) US Food and Drug Administration drug approval summary: conversion of imatinib mesylate (sti571; gleevec) tablets from accelerated approval to full approval. Clin Cancer Res 11:12–19

    PubMed  Google Scholar 

  • D’Alonzo GE, Barst RJ, Ayres SM et al (1991) Survival in patients with primary pulmonary hypertension. Ann Intern Med 115:343–349

    Article  PubMed  Google Scholar 

  • Dahal BK, Cornitescu T, Tretyn A et al (2010) Role of epidermal growth factor inhibition in experimental pulmonary hypertension. Am J Respir Crit Care Med 181:158–167

    Article  PubMed  CAS  Google Scholar 

  • Dahal BK, Heuchel R, Pullamsetti SS, Wilhelm J, Ghofrani HA, Weissmann N, Seeger W, Grimminger F, Schermuly RT (2011a) Hypoxic pulmonary hypertension in mice with constitutively active platelet-derived growth factor receptor-β. Pulm Circ 1:259–268

    Article  PubMed  CAS  Google Scholar 

  • Dahal BK, Kosanovic D, Kaulen C, Cornitescu T, Savai R, Hoffmann J, Reiss I, Ghofrani HA, Weissmann N, Kübler WM, Seeger W, Grimminger F, Schermuly RT (2011b) Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats. Respir Res 12:60

    Article  PubMed  CAS  Google Scholar 

  • Delgado JF, Conde E, Sanchez V et al (2005) Pulmonary vascular remodeling in pulmonary hypertension due to chronic heart failure. Eur J Heart Fail 7:1011–1016

    Article  PubMed  Google Scholar 

  • DeMali KA, Whiteford CC, Ulug ET, Kazlauskas A (1997) Platelet-derived growth factor-dependent cellular transformation requires either phospholipase Cγ or phosphatidylinositol 3 kinase. J Biol Chem 272:9011–9018

    Article  PubMed  CAS  Google Scholar 

  • Druker BJ, Guilhot F, O’Brian SG, IRIS Investigators et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    Article  PubMed  CAS  Google Scholar 

  • Dumitrescu D, Seck C, ten Freyhaus H, Gerhardt F, Erdmann E, Rosenkranz S (2011) Fully reversible pulmonary arterial hypertension associated with dasatinib treatment for chronic myeloid leukemia. Eur Respir J 38:218–220

    Article  PubMed  CAS  Google Scholar 

  • Falcetti E, Hall SM, Phillips PG et al (2010) Smooth muscle proliferation and role of the prostacyclin (IP) receptor in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 182:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Fambrough D, McClure K, Kazlauskas A, Lander ES (1999) Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97:727–741

    Article  PubMed  CAS  Google Scholar 

  • Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351:1655–1665

    Article  PubMed  CAS  Google Scholar 

  • Fernandez A, Sanguino A et al (2007) An anticancer c-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest 117:4044–4054

    Article  PubMed  CAS  Google Scholar 

  • Galiè N, Ghofrani HA et al (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353:2148–2157

    Article  PubMed  Google Scholar 

  • Galiè N, Brundage BH et al (2009a) Tadalafil therapy for pulmonary arterial hypertension. Circulation 119:2894–2903

    Article  PubMed  CAS  Google Scholar 

  • Galiè N, Hoeper MM, Humbert M et al (2009b) Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30:2493–2537

    Article  PubMed  Google Scholar 

  • Galiè N, Manes A, Negro L et al (2009c) A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur Heart J 30:394–403

    Article  PubMed  Google Scholar 

  • Galiè N, Palazzini M, Manes A (2010) Pulmonary arterial hypertension: from the kingdom of the near-dead to multiple clinical trial meta-analyses. Eur Heart J 31:2080–2086

    Article  PubMed  Google Scholar 

  • Gambaryan N, Perros F, Montani D, Cohen-Kaminski S, Mazmanian GM, Humbert M (2010) Imatinib inhibits bone marrow-derived c-kit+ cell mobilization in hypoxic pulmonary hypertension. Eur Respir J 35:1209–1211

    Article  Google Scholar 

  • Garcia-Hernandez FJ, Castillo-Palma MJ, Gonzalez-Leon R et al (2008) Experience with imatinib to treat pulmonary arterial hypertension. Arch Bronconeumol 44:689–691

    Article  PubMed  Google Scholar 

  • Ghofrani HA, Seeger W, Grimminger F (2005) Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med 353:1412–1413

    Article  PubMed  CAS  Google Scholar 

  • Ghofrani HA, Morrell NW, Hoeper MM et al (2010a) Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am J Respir Crit Care Med 182:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Ghofrani HA, Morrell NW, Hoeper MM et al (2010b) Long term use of imatinib in patients with severe pulmonary arterial hypertension. Am J Respir Crit Care Med 181(Suppl):A2513 (Abstract)

    Google Scholar 

  • Gilbertson DG, Duff ME, West JW et al (2001) Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF α and β receptor. J Biol Chem 276:27406–27414

    Article  PubMed  CAS  Google Scholar 

  • Grimminger F, Schermuly RT (2010) PDGF receptor and its antagonists: role in treatment of PAH. Adv Exp Med Biol 661:435–446

    Article  PubMed  CAS  Google Scholar 

  • Gschwind HP, Pfaar U et al (2005) Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab Dispos 33:1503–1512

    Article  PubMed  CAS  Google Scholar 

  • Haga M, Yamashita A et al (2003) Oscillatory shear stress increases smooth muscle cell proliferation and Akt phosphorylation. J Vasc Surg 37:1277–1284

    Article  PubMed  Google Scholar 

  • Hassoun PM, Mouthon L, Barbera JA et al (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54(Suppl S):S10–S19

    Article  PubMed  CAS  Google Scholar 

  • Haworth SG (2007) The cell and molecular biology of right ventricular dysfunction in pulmonary hypertension. Eur Heart J 28(Suppl H):H10–H16

    Google Scholar 

  • Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    PubMed  CAS  Google Scholar 

  • Hennigs JK, Keller G, Baumann HJ et al (2011) Multi tyrosine kinase inhibitor dasatinib as novel cause of severe pre-capillary pulmonary hypertension? BMC Pulm Med 11:30

    Article  PubMed  CAS  Google Scholar 

  • Hoeper MM, Barst RJ, Bourge R et al (2011a) Imatinib improves exercise capacity and hemodynamics at 24 weeks as add-on therapy in symptomatic pulmonary arterial hypertension patients: the IMPRES Study. Chest 140(Suppl):1045A (Abstract)

    Article  Google Scholar 

  • Hoeper M, Barst RJ, Galiè N et al (2011b) Imatinib in pulmonary arterial hypertension, a randomized efficacy study (IMPRES). Eur Respir J 38(Suppl):413 (Abstract)

    Google Scholar 

  • Hoeper MM, Barst RJ, Chang HJ et al (2012) Imatinib safety and efficacy: interim analysis of IMPRES extension study in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 184(Suppl):A2495 (Abstract)

    Google Scholar 

  • Huang Q, Sun R (1997) Changes of PDGF-α and β receptor gene expression in hypoxic rat pulmonary vessels. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 19:470–473

    PubMed  CAS  Google Scholar 

  • Humar R, Kiefer FN et al (2002) Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J 16:771–780

    Article  PubMed  CAS  Google Scholar 

  • Humbert M, Monti G, Fartoukh M et al (1998) Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur Respir J 11:554–559

    PubMed  CAS  Google Scholar 

  • Humbert M, Segal ES, Kiely DG et al (2007) Results of European post-marketing surveillance of bosentan in pulmonary hypertension. Eur Respir J 30:338–340

    Article  PubMed  CAS  Google Scholar 

  • Humbert M, Sitbon O, Chaouat A et al (2010) Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 122:156–163

    Article  PubMed  Google Scholar 

  • Izikki M, Guignabert C, Fadel E et al (2009) Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. J Clin Invest 119:512–523

    Article  PubMed  CAS  Google Scholar 

  • Joly M, Kazlauskas A, Fay FS, Corvera S (1994) Disruption of PDGF receptor trafficking by mutation of its PI-3 kinase sites. Science 263:684–687

    Article  PubMed  CAS  Google Scholar 

  • Jones R, Capen D, Jacobson M, Munn L (2006) PDGF and microvessel wall remodeling in adult rat lung: imaging PDGF-aa and PDGF-rα molecules in progenitor smooth muscle cells developing in experimental pulmonary hypertension. Cell Tissue Res 326:759–769

    Article  PubMed  CAS  Google Scholar 

  • Kappert K, Peters KG, Bohmer FD, Ostman A (2005) Tyrosine phosphatases in vessel wall signaling. Cardiovasc Res 65:587–598

    Article  PubMed  CAS  Google Scholar 

  • Kappert K, Paulsson J, Sparwel J et al (2007) Dynamic changes in the expression of DEP-1 and other PDGF receptor-antagonizing PTPs during onset and termination of neointima formation. FASEB J 21:523–534

    Article  PubMed  CAS  Google Scholar 

  • Katayose D, Ohe M, Yamauchi K et al (1993) Increased expression of PDGF-α and β-chain genes in rat lungs with hypoxic pulmonary hypertension. Am J Physiol 264:L100–L106

    PubMed  CAS  Google Scholar 

  • Kazlauskas A (1994) Receptor tyrosine kinases and their targets. Curr Opin Genet Dev 4:5–14

    Article  PubMed  CAS  Google Scholar 

  • Kerkelä R, Grazette L, Yacobi R et al (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12:908–916

    Article  PubMed  CAS  Google Scholar 

  • Klinghoffer RA, Duckworth B, Valius M, Cantley L, Kazlauskas A (1996) Platelet-derived growth factor-dependent activation of phosphatidylinositol 3-kinase is regulated by receptor binding of SH2-domain-containing proteins which influence Ras activity. Mol Cell Biol 16:5905–5914

    PubMed  CAS  Google Scholar 

  • Kundra V, Escobedo JA, Kazlauskas A et al (1994) Regulation of chemotaxis by the platelet-derived growth factor receptor β. Nature 367:474–476

    Article  PubMed  CAS  Google Scholar 

  • Kwapiszewska G, Wilhelm J, Wolff S et al (2005) Expression profiling of laser-microdissected intrapulmonary arteries in hypoxia-induced pulmonary hypertension. Respir Res 6:109

    Article  PubMed  CAS  Google Scholar 

  • Lanner MC, Raper M et al (2005) Heterotrimeric G proteins and the platelet-derived growth factor receptor-beta contribute to hypoxic proliferation of smooth muscle cells. Am J Respir Cell Mol Biol 33:412–419

    Article  PubMed  CAS  Google Scholar 

  • LaRochelle WJ, Jeffers M, McDonald WF et al (2001) PDGF-D, a new protease-activated growth factor. Nat Cell Biol 3:517–521

    Article  PubMed  CAS  Google Scholar 

  • Le Coutre P, Kreuzer KA et al (2004) Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 53:313–323

    Article  PubMed  CAS  Google Scholar 

  • Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887

    Article  PubMed  CAS  Google Scholar 

  • Levitzki A (2005) PDGF receptor kinase inhibitors for the treatment of restenosis. Cardiovasc Res 65:581–586

    Article  PubMed  CAS  Google Scholar 

  • Li X, Pontén A, Aase K et al (2000) PDGF-C is a new protease-activated ligand for the PDGF α-receptor. Nat Cell Biol 2:302–309

    Article  PubMed  CAS  Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  • Machado R, Eickelberg O, Elliott CG et al (2009) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 54(Suppl S):S32–S42

    Article  PubMed  CAS  Google Scholar 

  • Mattei D, Feola M, Orzan F, Mordini N, Rapezzi D, Gallamini A (2009) Reversible dasatinib-induced pulmonary arterial hypertension and right ventricle failure in a previously allografted CML patient. Bone Marrow Transplant 43:967–968

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin VV, Archer SL, Badesch DB et al (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53:1573–1619

    Article  PubMed  Google Scholar 

  • Mellgren AM, Smith CL, Olsen GS et al (2008) Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res 103:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Merklinger SL, Jones PL, Martinez EC, Rabinovitch M (2005) Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112:423–431

    Article  PubMed  CAS  Google Scholar 

  • Miyake S, Mullane-Robinson KP, Lill NL, Douillard P, Band H (1999) Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation. A critical role for Cbl tyrosine kinase-binding domain. J Biol Chem 274:16619–16628

    Article  PubMed  CAS  Google Scholar 

  • Montani D, Bergot E, Günther S, Savale L, Bergeron A, Bourdin A, Bouvaist H, Canuet M, Pison C, Macro M, Poubeau P, Girerd B, Natali D, Guignabert C, Perros F, O’Callaghan DS, Jaïs X, Tubert-Bitter P, Zalcman G, Sitbon O, Simonneau G, Humbert M (2012) Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 125:2128–2137

    Article  PubMed  CAS  Google Scholar 

  • Montmayeur JP, Valius M, Vandenheede J, Kazlauskas A (1997) The platelet-derived growth factor β-receptor triggers multiple cytoplasmic signaling cascades that arrive at the nucleus at distinguishable inputs. J Biol Chem 272:32670–32678

    Article  PubMed  CAS  Google Scholar 

  • Morrell NW, Adnot S, Archer SL et al (2009) Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54(Suppl S):S20–S31

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj C, Tang B, Bálint Z, Wygrecka M, Hrzenjak A, Kwapiszewska G, Stacher E, Lindenmann J, Weir EK, Olschewski H, Olschewski A (2013) Src tyrosine kinase is crucial for potassium channel function in human pulmonary arteries. Eur Respir J 41:85–95

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Akagi S, Ogawa A et al (2011) Pro-apoptotic effects of imatinib on PDGF-stimulated pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Int J Cardiol 159(2):100–106

    Article  PubMed  Google Scholar 

  • Newman JH, Trembath RC et al (2004) Genetic basis of pulmonary arterial hypertension: current understanding and future directions. J Am Coll Cardiol 43(Suppl S):33S–39S

    Article  PubMed  CAS  Google Scholar 

  • Ogawa A, Firth AL, Yao W et al (2009) Inhibition of mTOR attenuates store-operated Ca2+ entry in cells from endarterectomized tissues of patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 297:L666–L676

    Article  PubMed  CAS  Google Scholar 

  • Olschewski H, Simonneau G et al (2002) Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 347:322–329

    Article  PubMed  CAS  Google Scholar 

  • Oudiz RJ, Galie N et al (2009) Long-term ambrisentan therapy for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol 54:1971–1981

    Article  PubMed  Google Scholar 

  • Panzhinskiy E, Zawada WM, Stenmark KR, Das M (2012) Hypoxia induces unique proliferative response in adventitial fibroblasts by activating PDGFβ receptor-JNK1 signalling. Cardiovasc Res 95(3):356–365

    Article  PubMed  CAS  Google Scholar 

  • Patterson KC, Weissmann A, Ahmadi T, Farber HW (2006) Imatinib mesylate in the treatment of refractory idiopathic pulmonary arterial hypertension. Ann Intern Med 145:152–153

    Article  PubMed  Google Scholar 

  • Peng B, Lloyd P et al (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44:879–894

    Article  PubMed  CAS  Google Scholar 

  • Perros F, Montani D, Dorfmüller P et al (2008) Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 178:81–88

    Article  PubMed  CAS  Google Scholar 

  • Pullamsetti SS, Berghausen EM, Dabral S, Tretyn A, Butrous E, Savai R, Butrous G, Dahal BK, Brandes RP, Ghofrani HA, Weissmann N, Grimminger F, Seeger W, Rosenkranz S, Schermuly RT (2012) Role of Src tyrosine kinases in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 32:1354–1365

    Article  PubMed  CAS  Google Scholar 

  • Quinta’s-Cardama A, Kantarijan H, O’Brien S et al (2007) Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol 25:3908–3914

    Article  CAS  Google Scholar 

  • Raines EW (2004) PDGF and cardiovascular disease. Cytokine Growth Factor Rev 15:237–254

    Article  PubMed  CAS  Google Scholar 

  • Rasheed W, Flaim B, Seymour JF (2009) Reversible severe pulmonary hypertension secondary to dasatinib in a patient with chronic myeloid leukemia. Leuk Res 33:861–864

    Article  PubMed  Google Scholar 

  • Rosenkranz S (2007) Pulmonary hypertension: current diagnosis and treatment. Clin Res Cardiol 96:527–541

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz S, Kazlauskas A (1999) Evidence for distinct signaling properties and biological responses induced by the PDGF receptor α and β subtypes. Growth Factors 16:201–216

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz S, DeMali KA, Gelderloos JA, Bazenet C, Kazlauskas A (1999) Identification of the receptor-associated signaling enzymes that are required for platelet-derived growth factor-AA-dependent chemotaxis and DNA synthesis. J Biol Chem 274:28335–28343

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz S, Ikuno Y, Leong FL et al (2000) Src family kinases negatively regulate platelet-derived growth factor alpha receptor-dependent signaling and disease progression. J Biol Chem 275:9620–9627

    Article  PubMed  CAS  Google Scholar 

  • Rubin LJ, Badesch DB et al (2002) Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346:896–903

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Narita M, Takahashi M et al (2003) The effects of STI571 on antigen presentation in dendritic cells generated from patients with chronic myelogenous leukemia. Hematol Oncol 2:67–75

    Article  Google Scholar 

  • Schermuly RT, Dony E, Ghofrani HA et al (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811–2821

    Article  PubMed  CAS  Google Scholar 

  • Schultz K, Fanburg BL et al (2006) Hypoxia and hypoxia-inducible factor-1alpha promote growth factor-induced proliferation of human vascular smooth muscle cells. Am J Physiol 290:H2528–H2534

    CAS  Google Scholar 

  • Schwartz SM (1997) Perspectives series: cell adhesion in vascular biology: smooth muscle migration in atherosclerosis and restenosis. J Clin Invest 99:2814–2816

    Article  PubMed  CAS  Google Scholar 

  • Shah AM, Campbell P, Peacock A, Barst RJ, Quinn D, Salomon SD, for the IMPRES Investigators (2012) Effect of imatinib as add-on therapy on echocardiographic measures of right ventricular function in patients with advanced PAH: the Imatinib in Pulmonary arterial hypertension, a Randomized Efficacy Study (IMPRES) echocardiography sub-study. Heart Fail (Abstract)

    Google Scholar 

  • Simonneau G, Barst RJ, Galiè N et al (2002) Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 165:800–804

    Article  PubMed  Google Scholar 

  • Simonneau G, Rubin LJ, Galiè N et al (2008) Addition of sildenafil to long-term intravenous epoprostenol therapy in patients with pulmonary arterial hypertension: a randomized trial. Ann Intern Med 149:521–530

    Article  PubMed  Google Scholar 

  • Simonneau G, Robbins IM, Beghetti M et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54(Suppl S):S43–S54

    Article  PubMed  Google Scholar 

  • Sitbon O, Galiè N (2010) Treat-to-target strategies in pulmonary arterial hypertension: the importance of using multiple goals. Eur Respir Rev 19:272–278

    Article  PubMed  CAS  Google Scholar 

  • Sitbon O, Humbert M, Jais X et al (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111:3105–3111

    Article  PubMed  CAS  Google Scholar 

  • Soriano P (1994) Abnormal kidney development and haematological disorders in PDGF β-receptor mutant mice. Genes Dev 8:1888–1896

    Article  PubMed  CAS  Google Scholar 

  • Souza R, Sitbon O, Parent G, Simonneau G, Humbert M (2006) Long term imatinib treatment in pulmonary arterial hypertension. Thorax 61:736

    Article  PubMed  CAS  Google Scholar 

  • Stenmark KR, Gerasimovskaya E, Nemenoff RA, Das M (2002) Hypoxic activation of adventitial fibroblasts: role in vascular remodeling. Chest 122(Suppl 6):326S–334S

    Article  PubMed  CAS  Google Scholar 

  • Sterpetti AV, Cucina A et al (1992) Modulation of arterial smooth muscle cell growth by haemodynamic forces. Eur J Vasc Surg 6:16–20

    Article  PubMed  CAS  Google Scholar 

  • Tallquist MD, Soriano P, Klinghoffer RA (1999) Growth factor signaling pathways in vascular development. Oncogene 18:7917–7932

    Article  PubMed  CAS  Google Scholar 

  • Tallquist MD, Klinghoffer RA, Heuchel R, Mueting-Nelsen PF, Corrin PD, Heldin C-H, Johnson RJ, Soriano P (2000) Retention of PDGFR-β function in mice in the absence of phosphatidylinositol 3′-kinase and phospholipase Cγ signalling pathways. Genes Dev 14:3179–3190

    Article  PubMed  CAS  Google Scholar 

  • Tanizawa S, Ueda M et al (1996) Expression of platelet derived growth factor B chain and beta receptor in human coronary arteries after percutaneous transluminal coronary angioplasty: an immunohistochemical study. Heart 75:549–556

    Article  PubMed  CAS  Google Scholar 

  • Tapper EB, Knowles D, Heffron T et al (2009) Portopulmonary hypertension: imatinib is a novel tretament and the Emory experience with this condition. Transplant Proc 41:1969–1971

    Article  PubMed  CAS  Google Scholar 

  • Ten Freyhaus H, Huntgeburth M et al (2006) Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 71:331–341

    Article  PubMed  CAS  Google Scholar 

  • Ten Freyhaus H, Dumitrescu D, Bovenschulte H, Erdmann E, Rosenkranz S (2009) Significant improvement of right ventricular function by imatinib mesylate in scleroderma-associated pulmonary arterial hypertension. Clin Res Cardiol 98:265–267

    Article  PubMed  Google Scholar 

  • Ten Freyhaus H, Dagnell M, Leuchs M et al (2011) Hypoxia enhances platelet-derived growth factor signaling in the pulmonary vasculature by down-regulation of protein tyrosine phosphatases. Am J Respir Crit Care Med 183:1092–1102

    Article  PubMed  CAS  Google Scholar 

  • Ten Freyhaus H, Janssen W, Leuchs M, Zierden M, Vantler M, Caglayan E, Schermuly RT, Tallquist MD, Rosenkranz S (2012) Disruption of βPDGFR-dependent PI3K and PLCγ signaling protects from hypoxia-induced pulmonary hypertension. Circulation 125(Suppl) (Abstract)

    Google Scholar 

  • Tong WG, Kantarjian H, O’Brien S, Faderl S, Ravandi F, Borthakur G, Shan J, Pierce S, Rios MB, Cortes J (2010) Imatinib front-line therapy is safe and effective in patients with chronic myelogenous leukemia with pre-existing liver and/or renal dysfunction. Cancer 116:3152–3159

    Article  PubMed  CAS  Google Scholar 

  • Tu L, De Man FS, Girerd B, Huertas A, Chaumais MC, Lecerf F, François C, Perros F, Dorfmüller P, Fadel E, Montani D, Eddahibi S, Humbert M, Guignabert C (2012) A critical role for p130Cas in the progression of pulmonary hypertension in humans and rodents. Am J Respir Crit Care Med 186(7):666–676

    Article  PubMed  CAS  Google Scholar 

  • Tuder RM, Voelkel N (2010) Pulmonary hypertension and inflammation. J Lab Clin Med 132:16–24

    Article  Google Scholar 

  • Tuder RM, Abman SH, Braun T et al (2009) Development and pathology of pulmonary hypertension. J Am Coll Cardiol 54(Suppl S):S3–S9

    Article  PubMed  CAS  Google Scholar 

  • Valius M, Kazlauskas A (1993) Phospholipase C-γ1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 73:321–334

    Article  PubMed  CAS  Google Scholar 

  • Valius M, Secrist J-P, Kazlauskas A (1995) The GTPase activating protein of Ras suppresses platelet-derived growth factor beta receptor signaling by silencing phospholipase C-γ1. Mol Cell Biol 15:3058–3071

    PubMed  CAS  Google Scholar 

  • Van Wolferen SA, Marcus JT, Boonstra A et al (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28:1250–1257

    Article  PubMed  Google Scholar 

  • Vantler M, Caglayan E, Zimmermann WH, Bäumer AT, Rosenkranz S (2005) Systematic evaluation of anti-apoptotic growth factor signaling in vascular smooth muscle cells. Only phosphatidylinositol 3′-kinase is important. J Biol Chem 280:14168–14176

    Article  PubMed  CAS  Google Scholar 

  • Vantler M, Karikkineth BC, Naito H et al (2010) PDGF-BB protects cardiomyocytes from apoptosis and improves contractile function of engineered heart tissue. J Mol Cell Cardiol 48:1316–1323

    Article  PubMed  CAS  Google Scholar 

  • Wharton J, Davie N et al (2000) Prostacyclin analogues differentially inhibit growth of distal and proximal human pulmonary artery smooth muscle cells. Circulation 102:3130–3136

    Article  PubMed  CAS  Google Scholar 

  • Wharton J, Strange JW et al (2005) Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med 172:105–113

    Article  PubMed  Google Scholar 

  • Young KC, Torres E, Hehre D, Suguihara C, Hare J (2009) Neonatal c-kit mutant mice exhibit decreased susceptibility to hypoxia-induced pulmonary hypertension. Circulation 120:S750–S751

    Google Scholar 

  • Zhang L, Ma J, Shen T, Wang S, Ma C, Liu Y, Ran Y, Wang L, Liu L, Zhu D (2012) Platelet-derived growth factor (PDGF) induces pulmonary vascular remodeling through 15-LO/15-HETE pathway under hypoxic condition. Cell Signal 24:1931–1939

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Rosenkranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berghausen, E., ten Freyhaus, H., Rosenkranz, S. (2013). Targeting of Platelet-Derived Growth Factor Signaling in Pulmonary Arterial Hypertension. In: Humbert, M., Evgenov, O., Stasch, JP. (eds) Pharmacotherapy of Pulmonary Hypertension. Handbook of Experimental Pharmacology, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38664-0_16

Download citation

Publish with us

Policies and ethics