Skip to main content

Advertisement

Log in

Effects of CYP2B6 genetic polymorphisms in patients receiving cyclophosphamide combination chemotherapy for breast cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to measure the frequency of three CYP2B6 [CYP2B6*4 (rs2279343), CYP2B6*5 (rs3211371) and CYP2B6*9 (rs3745274)] alleles in patients with breast cancer receiving cyclophosphamide (CP) therapy and test whether these variants are predictors of CP-associated toxicity and efficacy.

Methods

A total of 145 female breast cancer patients admitted to the American University of Beirut Medical Center for breast cancer-related therapy were included. Chart review was performed for collection of toxicity data. A time-to-event analysis was performed with a subset of 38 patients.

Results

The minor allele frequencies of CYP2B6*9, CYP2B6*4 and CYP2B6*5 were 0.27, 0.29 and 0.07, respectively. CYP2B6 *5/*6, *6/*9 or *6/*6 haplotypes were associated with a significantly shorter time to recurrence of the disease. There were no significant associations with myelo-toxicity.

Conclusions

This is the first report on the pharmacogenetic profile of patients with breast cancer and the therapeutic and myelo-toxic behavior of CP in women from an Arab Middle Eastern country. Our results show that genotyping for these CYP2B6 alleles does not help in personalizing therapy from a toxicity perspective, and the association of shorter survival in these subjects with homozygous variants is interesting yet insufficient to justify routine genotyping prior to therapy, or to consider using a higher CP dose. Larger future studies or meta-analyses will be needed to further clarify the potential implication of these genetic polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer. Ann Oncol 18:1133–1144

    Article  CAS  PubMed  Google Scholar 

  2. Pinto N, Ludeman SM, Dolan ME (2009) Drug focus: pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics 10:1897–1903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD (2008) Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 18:515–523

    Article  CAS  PubMed  Google Scholar 

  4. Roy P, Yu LJ, Crespi CL, Waxman DJ (1999) Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 27:655–666

    CAS  PubMed  Google Scholar 

  5. Wang H, Tompkins LM (2008) CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab 9:598–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Choi JY, Nowell SA, Blanco JG, Ambrosone CB (2006) The role of genetic variability in drug metabolism pathways in breast cancer prognosis. Pharmacogenomics 7:613–624

    Article  CAS  PubMed  Google Scholar 

  7. Petros WP, Broadwater G, Berry D, Jones RB, Vredenburgh JJ, Gilbert CJ, Gibbs JP, Colvin OM, Peters WP (2002) Association of high-dose cyclophosphamide, cisplatin, and carmustine pharmacokinetics with survival, toxicity, and dosing weight in patients with primary breast cancer. Clin Cancer Res 8:698–705

    CAS  PubMed  Google Scholar 

  8. Petros WP, Hopkins PJ, Spruill S, Broadwater G, Vredenburgh JJ, Colvin OM, Peters WP, Jones RB, Hall J, Marks JR (2005) Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J Clin Oncol 23:6117–6125

    Article  CAS  PubMed  Google Scholar 

  9. Xie H, Griskevicius L, Stahle L, Hassan Z, Yasar U, Rane A, Broberg U, Kimby E, Hassan M (2006) Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur J Pharm Sci 27:54–61

    Article  CAS  PubMed  Google Scholar 

  10. Nakajima M, Komagata S, Fujiki Y, Kanada Y, Ebi H, Itoh K, Mukai H, Yokoi T, Minami H (2007) Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics 17:431–445

    Article  CAS  PubMed  Google Scholar 

  11. Bray J, Sludden J, Griffin MJ, Cole M, Verrill M, Jamieson D, Boddy AV (2010) Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br J Cancer 102:1003–1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Low SK, Kiyotani K, Mushiroda T, Daigo Y, Nakamura Y, Zembutsu H (2009) Association study of genetic polymorphism in ABCC4 with cyclophosphamide-induced adverse drug reactions in breast cancer patients. J Hum Genet 54:564–571

    Article  CAS  PubMed  Google Scholar 

  13. Gor PP, Su HI, Gray RJ, Gimotty PA, Horn M, Aplenc R, Vaughan WP, Tallman MS, Rebbek TR, DeMichele A (2010) Cyclophosphamide-metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study. Breast Cancer Res 12:R26

    Article  PubMed Central  PubMed  Google Scholar 

  14. Yao S, Barlow WE, Albain KS, Choi JY, Zhao H, Livingston RB, Davis W, Rae JM, Yeh IT, Hutchins MF, Ravdin PM, Martino S, Lyss AP, Osborne CK, Abeloff M, Hortobagyi GN, Hayes DF, Ambrosone CB (2010) Gene polymorphisms in cyclophosphamide metabolism pathway, treatment-related toxicity, and disease-free survival in SWOG 8897 clinical trial for breast cancer. Clin Cancer Res 16:6169–6176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. National Cancer Institute. Common terminology criteria for adverse events. http://evs.nci.nih.gov/ftp1/CTCAE/About.html. Accessed 1 Jan 2010

  16. National Center for Biotechnology Information. Single-Nucleotide Polymorphism-release: NCBI dbSNP build 130. http://www.ncbi.nlm.nih.gov/pubmed. Accessed 1 Jan 2010

  17. Al-Dayel F, Al-Rasheed M, Ibrahim M, Bu R, Bavi P, Abubaker J, Al-Jomah N, Mohamed GH, Moorji A, Uddin S, Siraj AK, Al-Kuraya K (2008) Polymorphisms of drug-metabolizing enzymes CYP1A1, GSTT and GSTP contribute to the development of diffuse large B-cell lymphoma risk in the Saudi Arabian population. Leuk Lymphoma 49:122–129

    Article  CAS  PubMed  Google Scholar 

  18. Darazy M, Balbaa M, Mugharbil A, Saeed H, Sidani H, Abdel-Razzak Z (2011) CYP1A1, CYP2E1, and GSTM1 gene polymorphisms and susceptibility to colorectal and gastric cancer among Lebanese. Genet Test Mol Biomarkers 15:423–429

    Article  CAS  PubMed  Google Scholar 

  19. Ren S, Yang JS, Kalhorn TF, Slattery JT (1997) Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 57:4229–4235

    CAS  PubMed  Google Scholar 

  20. Ren S, Kalhorn TF, McDonald GB, Anasetti C, Appelbaum FR, Slattery JT (1998) Pharmacokinetics of cyclophosphamide and its metabolites in bone marrow transplantation patients. Clin Pharmacol Ther 64:289–301

    Article  CAS  PubMed  Google Scholar 

  21. Chang TK, Yu L, Goldstein JA, Waxman DJ (1997) Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 7:211–221

    Article  CAS  PubMed  Google Scholar 

  22. Griskevicius L, Yasar U, Sandberg M, Hidestrand M, Eliasson E, Tybring G, Hassan M, Dahl M (2003) Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol 59:103–109

    CAS  PubMed  Google Scholar 

  23. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM (2001) Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11:399–415

    Article  CAS  PubMed  Google Scholar 

  24. Jinno H, Tanaka-Kagawa T, Ohno A, Makino Y, Matsushima E, Hanioka N, Ando M (2003) Functional characterization of cytochrome P450 2B6 allelic variants. Drug Metab Dispos 31:398–403

    Article  CAS  PubMed  Google Scholar 

  25. Fernandes BJD, Silva CDM, Andrade JM, Matthes Ado C, Coelho EB, Lanchote VL (2011) Pharmacokinetics of cyclophosphamide enantiomers in patients with breast cancer. Cancer Chemother Pharmacol 68:897–904

    Article  CAS  PubMed  Google Scholar 

  26. Afsar NA, Ufer M, Haenisch S, Remmler C, Mateen A, Usman A, Ahmed KZ, Ahmad HR, Cascorbi I (2012) Relationship of drug metabolizing enzyme genotype to plasma levels as well as myelotoxicity of cyclophosphamide in breast cancer patients. Eur J Clin Pharmacol 68:389–395

    Article  CAS  PubMed  Google Scholar 

  27. Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, Fackenthal JD, Rogan PK, Ring B, Wrighton SA, Schuetz EG (2003) Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther 307:906–922

    Article  CAS  PubMed  Google Scholar 

  28. Hesse LM, He P, Krishnaswamy S, Hao Q, Hogan K, von Moltke LL, Greenblatt DJ, Court MH (2004) Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 14:225–238

    Article  CAS  PubMed  Google Scholar 

  29. Takada K, Arefayene M, Desta Z, Yarboro CH, Balow JE, Flockhart DA, Illei GG (2004) Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cyclophosphamide in lupus nephritic. Arth Rheum 50:2202–2210

    Article  CAS  Google Scholar 

  30. Ossaily S, Zgheib NK (2014) The pharmacogenetics of drug metabolizing enzymes in the Lebanese population. Drug Metabol Drug Interact. 29:81–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Joseph Simaan for reviewing and editing the manuscript. This study was funded by American University of Beirut Medical Practice Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Zgheib.

Additional information

F. Haroun and L. Al-Shaar made equal contribution.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroun, F., Al-Shaar, L., Habib, R.H. et al. Effects of CYP2B6 genetic polymorphisms in patients receiving cyclophosphamide combination chemotherapy for breast cancer. Cancer Chemother Pharmacol 75, 207–214 (2015). https://doi.org/10.1007/s00280-014-2632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2632-4

Keywords

Navigation