Skip to main content
Log in

Atrial natriuretic peptide protects against cisplatin-induced acute kidney injury

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cisplatin is an effective chemotherapeutic agent used in the treatment of a wide variety of malignancies. Acute kidney injury (AKI) is the major toxicity associated with cisplatin and sometimes necessitates a reduction in dose or discontinuation of treatment. Atrial natriuretic peptide (ANP) is secreted by the heart and exerts a wide range of renoprotective effects, including anti-inflammatory activity. The objective of this study was to investigate the protective effects of ANP on cisplatin-induced AKI in mice.

Methods

Mice were randomly divided into three groups: control, cisplatin (20 mg/kg, intraperitoneal)/vehicle treatment, and cisplatin/ANP (1.5 μg/kg/min via osmotic-pump, subcutaneous) treatment. At 72 h after cisplatin injection, serum blood urea nitrogen and creatinine, urine albumin/creatinine, and renal expression of mRNAs encoding tumor necrosis factor-α, interleukin (IL)-1β, IL-6, intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and transforming growth factor (TGF)-β were measured using real-time polymerase chain reaction. Histological changes were also evaluated.

Results

ANP treatment significantly attenuated cisplatin-induced increases in serum blood urea nitrogen and creatinine, urine albumin/creatinine, and renal expression of IL-1β, IL-6, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1 mRNAs. Cisplatin-induced renal dysfunction and renal tubular necrosis were thus attenuated by ANP treatment.

Conclusions

Our results indicate that ANP exhibits a protective effect against cisplatin-induced AKI in mice. ANP may thus be of value in prophylactic strategies aimed at mitigating the adverse effects associated with chemotherapy agents, including cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  CAS  PubMed  Google Scholar 

  2. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124

    Article  PubMed  Google Scholar 

  3. Launay-Vacher V, Rey JB, Isnard-Bagnis C, Deray G, Daouphars M (2008) Prevention of cisplatin nephrotoxicity: state of the art and recommendations from the European Society of Clinical Pharmacy Special Interest Group on Cancer Care. Cancer Chemother Pharmacol 6:903–909

    Article  Google Scholar 

  4. Nishikimi T, Maeda N, Matsuoka H (2006) The role of natriuretic peptides in cardioprotection. Cardiovasc Res 69:318–328

    Article  CAS  PubMed  Google Scholar 

  5. Saito Y, Nakao K, Nishimura K, Sugawara A, Okumura K, Obata K, Sonoda R, Ban T, Yasue H, Imura H (1987) Clinical application of atrial natriuretic polypeptide in patients with congestive heart failure: beneficial effects on left ventricular function. Circulation 76:115–124

    Article  CAS  PubMed  Google Scholar 

  6. Totsune K, Takahashi K, Murakami O, Satoh F, Sone M, Saito T, Sasano H, Mouri T, Abe K (1994) Natriuretic peptides in the human kidney. Hypertension 24:758–762

    Article  CAS  PubMed  Google Scholar 

  7. Nishikimi T, Inaba-Iemura C, Ishimura K, Tadokoro K, Koshikawa S, Ishikawa K, Akimoto K, Hattori Y, Kasai K, Minamino N, Maeda N, Matsuoka H (2009) Natriuretic peptide/natriuretic peptide receptor-A (NPR-A) system has inhibitory effects in renal fibrosis in mice. Regul Pept 154:44–53

    Article  CAS  PubMed  Google Scholar 

  8. Rosón MI, Toblli JE, Della Penna SL, Gorzalczany S, Pandolfo M, Cavallero S, Fernández BE (2006) Renal protective role of atrial natriuretic peptide in acute sodium overload-induced inflammatory response. Am J Nephrol 26:590–601

    Article  PubMed  Google Scholar 

  9. Morikawa S, Sone T, Tsuboi H, Mukawa H, Morishima I, Uesugi M, Morita Y, Numaguchi Y, Okumura K, Murohara T (2009) Renal protective effects and the prevention of contrast-induced nephropathy by atrial natriuretic peptide. J Am Coll Cardiol 53:1040–1046

    Article  CAS  PubMed  Google Scholar 

  10. Sezai A, Hata M, Niino T, Yoshitake I, Unosawa S, Wakui S, Kimura H, Shiono M, Takayama T, Hirayama A (2011) Results of low-dose human atrial natriuretic peptide infusion in nondialysis patients with chronic kidney disease undergoing coronary artery bypass grafting: the NU-HIT (Nihon University working group study of low-dose HANP Infusion Therapy during cardiac surgery) trial for CKD. J Am Coll Cardiol 58:897–903

    Article  CAS  PubMed  Google Scholar 

  11. Nojiri T, Hosoda H, Tokudome T, Miura K, Ishikane S, Kimura T, Shintani Y, Inoue M, Sawabata N, Miyazato M, Okumura M, Kangawa K (2014) Atrial natriuretic peptide inhibits lipopolysaccharide-induced acute lung injury. Pulm Pharmacol Ther 29:24–30

    Article  CAS  PubMed  Google Scholar 

  12. Wolf G, Thaiss F, Schoeppe W, Stahl RA (1992) Angiotensin II-induced proliferation of cultured murine mesangial cells: inhibitory role of atrial natriuretic peptide. J Am Soc Nephrol 3:1270–1278

    CAS  PubMed  Google Scholar 

  13. Pandey KN, Nguyen HT, Li M, Boyle JW (2000) Natriuretic peptide receptor-A negatively regulates mitogen-activated protein kinase and proliferation of mesangial cells: role of cGMP-dependent protein kinase. Biochem Biophys Res Commun 271:374–379

    Article  CAS  PubMed  Google Scholar 

  14. Mori Y, Kamada T, Ochiai R (2014) Reduction in the incidence of acute kidney injury after aortic arch surgery with low-dose atrial natriuretic peptide: a randomised controlled trial. Eur J Anaesthesiol 31:381–387

    Article  CAS  PubMed  Google Scholar 

  15. Allgren RL, Marbury TC, Rahman SN, Weisberg LS, Fenves AZ, Lafayette RA, Sweet RM, Genter FC, Kurnik BR, Conger JD, Sayegh MH (1997) Anaritide in acute tubular necrosis. Auriculin Anaritide Acute Renal Failure Study Group. N Engl J Med 336:828–834

    Article  CAS  PubMed  Google Scholar 

  16. Kitakaze M, Asakura M, Kim J, Shintani Y, Asanuma H, Hamasaki T, Seguchi O, Myoishi M, Minamino T, Ohara T, Nagai Y, Nanto S, Watanabe K, Fukuzawa S, Hirayama A, Nakamura N, Kimura K, Fujii K, Ishihara M, Saito Y, Tomoike H, Kitamura S (2007) Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 370:1483–1493

    Article  CAS  PubMed  Google Scholar 

  17. Maimaitiyiming H, Li Y, Cui W, Tong X, Norman H, Qi X, Wang S (2013) Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function. Am J Physiol Renal Physiol 305:F881–F890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (26861136) and a Grant from the Takeda Science Foundation, Japan Research Foundation for Clinical Pharmacology, Osaka Cancer Society, and Kobayashi Foundation for Cancer Research, Japan.

Conflict of interest

All authors have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nojiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nojiri, T., Hosoda, H., Kimura, T. et al. Atrial natriuretic peptide protects against cisplatin-induced acute kidney injury. Cancer Chemother Pharmacol 75, 123–129 (2015). https://doi.org/10.1007/s00280-014-2624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2624-4

Keywords

Navigation