Skip to main content
Log in

Protective effects of C-type natriuretic peptide on cisplatin-induced nephrotoxicity in Mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cisplatin is a highly effective chemotherapeutic agent used to treat various malignancies, but its utility is compromised by its nephrotoxicity. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, exhibits anti-inflammatory effects by activating its specific receptor, guanylyl cyclase (GC)-B. CNP and GC-B receptor are known to be expressed in both the vascular endothelium and the kidney. The objective of this study was to investigate the renoprotective effects of CNP in a mouse model of cisplatin-induced nephrotoxicity.

Methods

C57BL/6 mice were divided into three groups: normal control mice; cisplatin (20 mg/kg, intraperitoneal) mice treated with vehicle; and cisplatin mice treated with CNP (2.5 µg/kg/min, subcutaneous). At 72 h after cisplatin injection, urine, blood and kidney samples were collected. Urine and blood samples were examined biochemically. Histological findings and gene expression in kidney tissue were evaluated.

Results

CNP reduced histological renal tubular damage and apoptosis induced by cisplatin and suppressed plasma blood urea nitrogen and creatinine levels, which were elevated by cisplatin administration. CNP treatment decreased the expression of kidney injury molecule-1 and monocyte chemoattractant protein-1, which were elevated in the kidney by cisplatin administration. CNP treatment attenuated the decrease in GC-B expression in cisplatin-induced kidney injury.

Conclusions

The present study is the first to show that CNP inhibits nephrotoxicity and kidney cell damage induced by cisplatin. The mechanism of action may involve down-regulation of inflammatory cytokine expression in cisplatin-induced kidney injury and attenuation of apoptosis in renal tubular cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23:460–464

    Article  CAS  PubMed  Google Scholar 

  2. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  CAS  PubMed  Google Scholar 

  3. Taguchi T, Nazneen A, Abid MR, Razzaque MS (2005) Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol 148:107–121

    Article  CAS  PubMed  Google Scholar 

  4. Launay-Vacher V, Rey JB, Isnard-Bagnis C, Deray G, Daouphars M (2008) Prevention of cisplatin nephrotoxicity: state of the art and recommendations from the European Society of Clinical Pharmacy Special Interest Group on cancer care. Cancer Chemother Pharmacol 61:903–909

    Article  CAS  PubMed  Google Scholar 

  5. Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168:863–870

    Article  CAS  PubMed  Google Scholar 

  6. Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M (2006) Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci USA 103:4735–4740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H (1992) Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J Clin Invest 90:1145–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kimura T, Nojiri T, Hosoda H, Ishikane S, Shintani Y, Inoue M, Miyazato M, Okumura M, Kangawa K (2014) C-type natriuretic peptide attenuates LPS-induced acute lung injury in mice. J Surg Res. doi:10.1016/j.jss.2014.11.023

    Google Scholar 

  9. Itoh T, Nagaya N, Murakami S, Fujii T, Iwase T, Ishibashi-Ueda H, Yutani C, Yamagishi M, Kimura H, Kangawa K (2004) C-type natriuretic peptide ameliorates monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med 170:1204–1211

    Article  PubMed  Google Scholar 

  10. Obata H, Yanagawa B, Tanaka K, Ohnishi S, Kataoka M, Miyahara Y, Ishibashi-Ueda H, Kodama M, Aizawa Y, Kangawa K, Nagaya N (2007) CNP infusion attenuates cardiac dysfunction and inflammation in myocarditis. Biochem Biophys Res Commun 356:60–66

    Article  CAS  PubMed  Google Scholar 

  11. Schachner T, Zou Y, Oberhuber A, Mairinger T, Tzankov A, Laufer G, Ott H, Bonatti J (2004) Perivascular application of C-type natriuretic peptide attenuates neointimal hyperplasia in experimental vein grafts. Eur J Cardiothorac Surg 25:585–590

    Article  PubMed  Google Scholar 

  12. Dean AD, Vehaskari VM, Ritter D, Greenwald JE (1996) Distribution and regulation of guanylyl cyclase type B in the rat nephron. Am J Physiol 270:F311–F318

    CAS  PubMed  Google Scholar 

  13. Lohe A, Yeh I, Hyver T, Pratt R, Jamison R (1995) Natriuretic peptide B receptor and C-type natriuretic peptide in the rat kidney. J Am Soc Nephrol 6:1552–1558

    CAS  PubMed  Google Scholar 

  14. Canaan-Kuhl S, Ostendorf T, Zander K, Koch KM, Floege J (1998) C-type natriuretic peptide inhibits mesangial cell proliferation and matrix accumulation in vivo. Kidney Int 53:1143–1151

    Article  CAS  PubMed  Google Scholar 

  15. Segawa K, Minami K, Jimi N, Nakashima Y, Shigematsu A (1998) C-type natriuretic peptide inhibits rat mesangial cell proliferation by a phosphorylation-dependent mechanism. Naunyn Schmiedebergs Arch Pharmacol 357:70–76

    Article  CAS  PubMed  Google Scholar 

  16. Nojiri T, Hosoda H, Kimura T, Miura K, Ishikane S, Tokudome T, Shintani Y, Inoue M, Miyazato M, Okumura M, Kangawa K (2014) Atrial natriuretic peptide protects against cisplatin-induced acute kidney injury. Cancer Chemother Pharmacol. doi:10.1007/s00280-014-2624-4

    PubMed  Google Scholar 

  17. Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, Matsui I, Niimura F, Matsusaka T, Fujita N, Yoshimori T, Isaka Y, Rakugi H (2012) Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 180:517–525

    Article  CAS  PubMed  Google Scholar 

  19. Lee KW, Jeong JY, Lim BJ, Chang YK, Lee SJ, Na KR, Shin YT, Choi DE (2009) Sildenafil attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Toxicology 257:137–143

    Article  CAS  PubMed  Google Scholar 

  20. Lau AH (1999) Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int 56:1295–1298

    Article  CAS  PubMed  Google Scholar 

  21. Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, Liu KD, Mehta RL, Pannu N, Van Biesen W, Vanholder R (2013) Acute kidney injury: an increasing global concern. Lancet 382:170–179

    Article  PubMed  Google Scholar 

  22. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV (2004) Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286:F552–F563

    Article  CAS  PubMed  Google Scholar 

  23. McIlroy DR, Wagener G, Lee HT (2010) Biomarkers of acute kidney injury: an evolving domain. Anesthesiology 112:998–1004

    Article  PubMed  Google Scholar 

  24. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24:307–315

    Article  CAS  PubMed  Google Scholar 

  25. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of Cisplatin nephrotoxicity. Toxins 2:2490–2518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sangaralingham SJ, Heublein DM, Grande JP, Cataliotti A, Rule AD, McKie PM, Martin FL, Burnett JC Jr (2011) Urinary C-type natriuretic peptide excretion: a potential novel biomarker for renal fibrosis during aging. Am J Physiol Renal physiol 301:F943–F952

    Article  CAS  PubMed  Google Scholar 

  27. Igaki T, Itoh H, Suga S, Hama N, Ogawa Y, Komatsu Y, Mukoyama M, Sugawara A, Yoshimasa T, Tanaka I, Nakao K (1996) C-type natriuretic peptide in chronic renal failure and its action in humans. Kidney Int Suppl 55:S144–S147

    CAS  PubMed  Google Scholar 

  28. Lewko B, Endlich N, Kriz W, Stepinski J, Endlich K (2004) C-type natriuretic peptide as a podocyte hormone and modulation of its cGMP production by glucose and mechanical stress. Kidney Int 66:1001–1008

    Article  CAS  PubMed  Google Scholar 

  29. Kiemer AK, Lehner MD, Hartung T, Vollmar AM (2002) Inhibition of cyclooxygenase-2 by natriuretic peptides. Endocrinology 143:846–852

    Article  CAS  PubMed  Google Scholar 

  30. Maimaitiyiming H, Li Y, Cui W, Tong X, Norman H, Qi X, Wang S (2013) Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function. Am J Physiol Renal Physiol 305:F881–F890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Whitaker RM, Wills LP, Stallons LJ, Schnellmann RG (2013) cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J Pharmacol Exp Ther 347:626–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kim CS, Choi JS, Park JW, Bae EH, Ma SK, Lee J, Kim SW (2012) Altered regulation of nitric oxide and natriuretic peptide system in cisplatin-induced nephropathy. Regul Pept 174:65–70

    Article  CAS  PubMed  Google Scholar 

  33. Ahluwalia A, MacAllister RJ, Hobbs AJ (2004) Vascular actions of natriuretic peptides. Cyclic GMP-dependent and -independent mechanisms. Basic Res Cardiol 99:83–89

    Article  CAS  PubMed  Google Scholar 

  34. Del Ry S (2013) C-type natriuretic peptide: a new cardiac mediator. Peptides 40:93–98

    Article  PubMed  Google Scholar 

  35. Canaan-Kuhl S, Jamison RL, Myers BD, Pratt RE (1992) Identification of “B” receptor for natriuretic peptide in human kidney. Endocrinology 130:550–552

    CAS  PubMed  Google Scholar 

  36. Pham I, Sediame S, Maistre G, Roudot-Thoraval F, Chabrier PE, Carayon A, Adnot S (1997) Renal and vascular effects of C-type and atrial natriuretic peptides in humans. Am J Physiol 273:R1457–R1464

    CAS  PubMed  Google Scholar 

  37. Mangiafico S, Costello-Boerrigter LC, Andersen IA, Cataliotti A, Burnett JC Jr (2013) Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics. Eur Heart J 34:886–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Young Scientists (JSPS KAKENHI Grant Number 26861135) and a Grant from the Takeda Science Foundation.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Kimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Nojiri, T., Hosoda, H. et al. Protective effects of C-type natriuretic peptide on cisplatin-induced nephrotoxicity in Mice. Cancer Chemother Pharmacol 75, 1057–1063 (2015). https://doi.org/10.1007/s00280-015-2734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2734-7

Keywords

Navigation