Skip to main content

Advertisement

Log in

The membrane transport and polyglutamation of pralatrexate: a new-generation dihydrofolate reductase inhibitor

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To characterize, directly and for the first time, the membrane transport and metabolism of pralatrexate, a new-generation dihydrofolate reductase inhibitor approved for the treatment for peripheral T-cell lymphoma.

Experimental design

[3H]pralatrexate transport was studied in unique HeLa cell lines that express either the reduced folate carrier (RFC) or the proton-coupled folate transporter (PCFT). Metabolism to active polyglutamate derivatives was assessed by liquid chromatography. These properties were compared to those of methotrexate (MTX).

Results

The pralatrexate influx K t, mediated by RFC, the major route of folate/antifolate transport at systemic pH, was 0.52 μΜ, 1/10th the MTX influx K i. The electrochemical potential of pralatrexate within HeLa cells far exceeded the extracellular level and was greater than for MTX. In contrast, MTX transport mediated by PCFT, the mechanism of folate/antifolate absorption in the small intestine, exceeded that for pralatrexate. After a 6 h exposure of HeLa cells to 0.5 μM pralatrexate, 80 % of intracellular drug was its active polyglutamate forms, predominantly the tetraglutamate, and was suppressed when cells were loaded with natural folates. There was negligible formation of MTX polyglutamates. The difference in pralatrexate and MTX growth inhibition was far greater after transient exposures (375-fold) than continuous exposure (25-fold) to the drugs.

Conclusions

Pralatrexate’s enhanced activity relative to MTX is due to its much more rapid rate of transport and polyglutamation, the former less important when the carrier is saturated. The low affinity of pralatrexate for PCFT predicts a lower level of enterohepatic circulation and increased fecal excretion of the drug relative to MTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5-FormylTHF:

(6S)5-Formyltetrahydrofolate

AICAR transformylase:

Phosphoribosylaminoimidazole carboxamide formyltransferase

DHFR:

Dihydrofolate reductase

FPGS:

Folylpolyglutamate synthetase

MTX:

Methotrexate

PCFT:

Proton-coupled folate transporter

RFC:

Reduced folate carrier

References

  1. Bertino JR (1993) Ode to methotrexate. J Clin Oncol 11:5–14

    PubMed  CAS  Google Scholar 

  2. Farber S, Diamond LK, Mercer RD, Sylvester RF, Wolff VA (1948) Temporary remission in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl glutamic acid (aminopterin). N Engl J Med 238:787–793

    Article  PubMed  CAS  Google Scholar 

  3. Osborn MJ, Huennekens FM (1958) Enzymatic reduction of dihydrofolic acid. J Biol Chem 233:969–974

    PubMed  CAS  Google Scholar 

  4. Visentin M, Zhao R, Goldman ID (2012) The antifolates. Hematol Oncol Clin North Am 26:629–648

    Article  PubMed  Google Scholar 

  5. Zhao R, Goldman ID (2003) Resistance to antifolates. Oncogene 22:7431–7457

    Article  PubMed  CAS  Google Scholar 

  6. Baugh CM, Krumdieck CL, Nair MG (1973) Polygammaglutamyl metabolites of methotrexate. Biochem Biophys Res Commun 52:27–34

    Article  PubMed  CAS  Google Scholar 

  7. Chabner BA, Allegra CJ, Curt GA, Clendeninn NJ, Baram J, Koizumi S, Drake JC, Jolivet J (1985) Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest 76:907–912

    Article  PubMed  CAS  Google Scholar 

  8. Koizumi S, Curt GA, Fine RL, Griffin JD, Chabner BA (1985) Formation of methotrexate polyglutamates in purified myeloid precursor cells from normal human bone marrow. J Clin Invest 75:1008–1014

    Article  PubMed  CAS  Google Scholar 

  9. Poser RG, Sirotnak FM, Chello PL (1981) Differential synthesis of methotrexate polyglutamates in normal proliferative and neoplastic mouse tissues in vivo. Cancer Res 41:4441–4446

    PubMed  CAS  Google Scholar 

  10. Fabre I, Fabre G, Goldman ID (1984) Polyglutamylation, an important element in methotrexate cytotoxicity and selectivity in tumor versus murine granulocytic progenitor cells in vitro. Cancer Res 44:3190–3195

    PubMed  CAS  Google Scholar 

  11. Allegra CJ, Fine RL, Drake JC, Chabner BA (1986) The effect of methotrexate on intracellular folate pools in human MCF-7 breast cancer cells. Evidence for direct inhibition of purine synthesis. J Biol Chem 261:6478–6485

    PubMed  CAS  Google Scholar 

  12. Allegra CJ, Chabner BA, Drake JC, Lutz R, Rodbard D, Jolivet J (1985) Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates. J Biol Chem 260:9720–9726

    PubMed  CAS  Google Scholar 

  13. Matherly LH, Barlowe CK, Goldman ID (1986) Antifolate polyglutamylation and competitive drug displacement at dihydrofolate reductase as important elements in leucovorin rescue in L1210 cells. Cancer Res 46:588–593

    PubMed  CAS  Google Scholar 

  14. Matherly LH, Barlowe CK, Phillips VM, Goldman ID (1987) The effects of 4-aminoantifolates on 5-formyltetrahydrofolate metabolism in L1210 cells. J Biol Chem 262:710–717

    PubMed  CAS  Google Scholar 

  15. Taylor EC, Kuhnt D, Shih C, Rinzel SM, Grindey GB, Barredo J, Jannatipour M, Moran RG (1992) A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2, 3-d]pyrimidin-5-yl)ethyl]benzoyl]-l-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem 35:4450–4454

    Article  PubMed  CAS  Google Scholar 

  16. Racanelli AC, Rothbart SB, Heyer CL, Moran RG (2009) Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res 69:5467–5474

    Article  PubMed  CAS  Google Scholar 

  17. Piper JR, Johnson CA, Otter GM, Sirotnak FM (1992) Synthesis and antifolate evaluation of 10-ethyl-5-methyl- 5,10-dideazaaminopterin and an alternative synthesis of 10-ethyl-10-deazaaminopterin (edatrexate). J Med Chem 35:3002–3006

    Article  PubMed  CAS  Google Scholar 

  18. Sirotnak FM, DeGraw JI, Colwell WT, Piper JR (1998) A new analogue of 10-deazaaminopterin with markedly enhanced curative effects against human tumor xenografts in mice. Cancer Chemother Pharmacol 42:313–318

    Article  PubMed  CAS  Google Scholar 

  19. Sirotnak FM, DeGraw JI, Schmid FA, Goutas LJ, Moccio DM (1984) New folate analogs of the 10-deaza-aminopterin series. Further evidence for markedly increased antitumor efficacy compared with methotrexate in ascitic and solid murine tumor models. Cancer Chemother Pharmacol 12:26–30

    PubMed  CAS  Google Scholar 

  20. O’Connor OA, Horwitz S, Hamlin P, Portlock C, Moskowitz CH, Sarasohn D, Neylon E, Mastrella J, Hamelers R, Macgregor-Cortelli B, Patterson M, Seshan VE, Sirotnak F, Fleisher M, Mould DR, Saunders M, Zelenetz AD (2009) Phase II-I-II study of two different doses and schedules of pralatrexate, a high-affinity substrate for the reduced folate carrier, in patients with relapsed or refractory lymphoma reveals marked activity in T-cell malignancies. J Clin Oncol 27:4357–4364

    Article  PubMed  Google Scholar 

  21. O’Connor OA, Pro B, Pinter-Brown L, Bartlett N, Popplewell L, Coiffier B, Lechowicz MJ, Savage KJ, Shustov AR, Gisselbrecht C, Jacobsen E, Zinzani PL, Furman R, Goy A, Haioun C, Crump M, Zain JM, Hsi E, Boyd A, Horwitz S (2011) Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol 20;29:1182–1189

    Google Scholar 

  22. Zhao R, Diop-Bove N, Visentin M, Goldman ID (2011) Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 31:177–201

    Article  PubMed  CAS  Google Scholar 

  23. Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–928

    Article  PubMed  CAS  Google Scholar 

  24. Zhao R, Babani S, Gao F, Liu L, Goldman ID (2000) The mechanism of transport of the multitargeted antifolate, MTA-LY231514, and its cross resistance pattern in cell with impaired transport of methotrexate. Clin Cancer Res 6:3687–3695

    PubMed  CAS  Google Scholar 

  25. Zhao R, Gao F, Hanscom M, Goldman ID (2004) A prominent low-pH methotrexate transport activity in human solid tumor cells: contribution to the preservation of methotrexate pharmacological activity in HeLa cells lacking the reduced folate carrier. Clin Cancer Res 10:718–727

    Article  PubMed  CAS  Google Scholar 

  26. Zhao R, Qiu A, Tsai E, Jansen M, Akabas MH, Goldman ID (2008) The proton-coupled folate transporter (PCFT): impact on pemetrexed transport and on antifolate activities as compared to the reduced folate carrier. Mol Pharmacol 74:854–862

    Article  PubMed  CAS  Google Scholar 

  27. Diop-Bove NK, Wu J, Zhao R, Locker J, Goldman ID (2009) Hypermethylation of the human proton-coupled folate transporter (SLC46A1) minimal transcriptional regulatory region in an antifolate-resistant HeLa cell line. Mol Cancer Ther 8:2424–2431

    Article  PubMed  CAS  Google Scholar 

  28. Visentin M, Zhao R, Goldman ID (2012) Augmentation of reduced folate carrier-mediated transport of folates/antifolates through an antiport mechanism with 5-aminoimidazole-4-carboxamide riboside monophosphate. Mol Pharmacol 82:209–216

    Article  PubMed  CAS  Google Scholar 

  29. Zhao R, Chattopadhyay S, Hanscom M, Goldman ID (2004) Antifolate resistance in a HeLa cell line associated with impaired transport independent of the reduced folate carrier. Clin Cancer Res 10:8735–8742

    Article  PubMed  CAS  Google Scholar 

  30. Sharif KA and Goldman ID (2000) Rapid determination of membrane transport parameters in adherent cells. BioTechniques 28:926–928, 930, 932

    Google Scholar 

  31. Goldman ID, Lichtenstein NS, Oliverio VT (1968) Carrier-mediated transport of the folic acid analogue methotrexate, in the L1210 leukemia cell. J Biol Chem 243:5007–5017

    PubMed  CAS  Google Scholar 

  32. Zhao R, Hanscom M, Chattopadhyay S, Goldman ID (2004) Selective preservation of pemetrexed pharmacological activity in HeLa cells lacking the reduced folate carrier; association with the presence of a secondary transport pathway. Cancer Res 64:3313–3319

    Article  PubMed  CAS  Google Scholar 

  33. Zhao R, Gao F, Goldman ID (2001) Marked suppression of the activity of some, but not all, antifolate compounds by augmentation of folate cofactor pools within tumor cells. Biochem Pharmacol 61:857–865

    Article  PubMed  CAS  Google Scholar 

  34. Desmoulin SK, Hou Z, Gangjee A, Matherly LH (2012) The human proton-coupled folate transporter: biology and therapeutic applications to cancer. Cancer Biol Ther 13:1355–1373

    Article  PubMed  CAS  Google Scholar 

  35. Matherly LH, Voss MK, Anderson LA, Fry DW, Goldman ID (1985) Enhanced polyglutamylation of aminopterin relative to methotrexate in the Ehrlich ascites tumor cell in vitro. Cancer Res 45:1073–1078

    PubMed  CAS  Google Scholar 

  36. Ratliff AF, Wilson J, Hum M, Marling-Cason M, Rose K, Winick N, Kamen BA (1998) Phase I and pharmacokinetic trial of aminopterin in patients with refractory malignancies. J Clin Oncol 16:1458–1464

    PubMed  CAS  Google Scholar 

  37. Khokhar NZ, She Y, Rusch VW, Sirotnak FM (2001) Experimental therapeutics with a new 10-deazaaminopterin in human mesothelioma: further improving efficacy through structural design, pharmacologic modulation at the level of MRP ATPases, and combined therapy with platinums. Clin Cancer Res 7:3199–3205

    PubMed  CAS  Google Scholar 

  38. Wang ES, O’Connor O, She Y, Zelenetz AD, Sirotnak FM, Moore MA (2003) Activity of a novel anti-folate (PDX, 10-propargyl 10-deazaaminopterin) against human lymphoma is superior to methotrexate and correlates with tumor RFC-1 gene expression. Leuk Lymphoma 44:1027–1035

    Article  PubMed  CAS  Google Scholar 

  39. Zhao R, Seither R, Brigle KE, Sharina IG, Wang PJ, Goldman ID (1997) Impact of overexpression of the reduced folate carrier (RFC1), an anion exchanger, on concentrative transport in murine L1210 leukemia cells. J Biol Chem 272:21207–21212

    Article  PubMed  CAS  Google Scholar 

  40. Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM (1988) Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 53:785–794

    Article  PubMed  CAS  Google Scholar 

  41. Stein MA, Mathers DA, Yan H, Baimbridge KG, Finlay BB (1996) Enteropathogenic Escherichia coli markedly decreases the resting membrane potential of Caco-2 and HeLa human epithelial cells. Infect Immun 64:4820–4825

    PubMed  CAS  Google Scholar 

  42. Mould DR, Sweeney K, Duffull SB, Neylon E, Hamlin P, Horwitz S, Sirotnak F, Fleisher M, Saunders ME, O’Connor OA (2009) A population pharmacokinetic and pharmacodynamic evaluation of pralatrexate in patients with relapsed or refractory non-Hodgkin’s or Hodgkin’s lymphoma. Clin Pharmacol Ther 86:190–196

    Article  PubMed  CAS  Google Scholar 

  43. Steinberg SE, Campbell CL, Bleyer WA, Hillman RS (1982) Enterohepatic circulation of methotrexate in rats in vivo. Cancer Res 42:1279–1282

    PubMed  CAS  Google Scholar 

  44. Trevino LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, Chan D, Sparreboom A, Giacomini KM, Pui CH, Evans WE, Relling MV (2009) Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 27:5972–5978

    Article  PubMed  CAS  Google Scholar 

  45. Ramsey LB, Panetta JC, Smith C, Yang W, Fan Y, Winick NJ, Martin PL, Cheng C, Devidas M, Pui CH, Evans WE, Hunger SP, Loh M, Relling MV (2013) Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood 121:898–904

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Spectrum Pharmaceutical (Irvine, CA) and a Grant from the National Institutes of Health National Cancer Institute [CA82621].

Conflict of interest

No conflict to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. David Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visentin, M., Unal, E.S., Zhao, R. et al. The membrane transport and polyglutamation of pralatrexate: a new-generation dihydrofolate reductase inhibitor. Cancer Chemother Pharmacol 72, 597–606 (2013). https://doi.org/10.1007/s00280-013-2231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2231-9

Keywords

Navigation