Skip to main content

Advertisement

Log in

Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to examine the association between alterations in multidrug resistance (MDR) gene expression, measured before and after neoadjuvant chemotherapy (NAC), and short-term response in a cohort of stage IIA–IIIC breast cancer patients (n = 84).

Methods

All patients were treated with two to four preoperative cycles of FAC (5-fluorouracil–adriamycin–cyclophosphamide), CAX (cyclophosphamide–adriamycin–xeloda) or taxane regimes. The expression levels of key MDR genes (ABCB1, ABCC1, ABCC2, ABCC3, ABCC5, ABCG1, ABCG2, GSTP1, and MVP) were evaluated in both tumor tissues obtained pre-therapy and in specimens removed by final surgery, using TaqMan-based quantitative reverse transcriptase PCR.

Results

No significant difference in the average level of MDR gene expression in paired breast tumors before and after NAC was found when analyzed in both responsive and non-responsive patients. There was no correlation between the expression levels of MDR genes in pre-NAC tumors and immediate NAC response. In the group with tumor responses, we found a statistically significant downregulation of expression of ABCB1, ABCC1, ABCC2, ABCC5, ABCG1, ABCG2, GSTP1, and MVP genes following NAC in FAC and CAX-treated patients (67–93 % of cases). In contrast, we found that expression of these genes was upregulated after NAC, mostly in non-responsive patients (55–96 % of cases). Responsiveness to taxotere was related to reduced levels of ABCB1, ABCC2, ABCG1, ABCG2, and MVP mRNA in tumor samples collected after chemotherapy.

Conclusion

Our results suggest that reductions in MDR gene expression in post-NAC samples in comparison with pre-NAC are associated with tumor response to FAC and CAX as well as taxotere-based NAC, while patients displaying MDR gene upregulation had resistance to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234. doi:10.1038/nrd1984

    Article  PubMed  CAS  Google Scholar 

  2. Leonessa F, Clarke R (2003) ATP binding cassette transporters and drug resistance in breast cancer. Endocr Relat Cancer 10(1):43–73

    Article  PubMed  CAS  Google Scholar 

  3. Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10(2):147–156. doi:10.1038/nrc2789

    Article  PubMed  CAS  Google Scholar 

  4. Kuo MT (2007) Roles of multidrug resistance genes in breast cancer chemoresistance. Adv Exp Med Biol 608:23–30

    Article  PubMed  CAS  Google Scholar 

  5. Wind N, Holen I (2011) Multidrug resistance in breast cancer–from in vitro models to clinical studies. Int J Breast Cancer 2011:1–12. doi:10.4061/2011/967419

    Article  Google Scholar 

  6. Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 1775(2):237–262. doi:10.1016/j.bbcan.2007.05.002

    PubMed  CAS  Google Scholar 

  7. Gillet JP, Gottesman MM (2011) Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Curr Pharm Biotechnol 12(4):686–692

    Article  PubMed  CAS  Google Scholar 

  8. Vasieva O (2011) The many faces of glutathione transferase pi. Curr Mol Med 11(2):129–139

    Article  PubMed  CAS  Google Scholar 

  9. Mossink MH, van Zon A, Scheper RJ, Sonneveld P, Wiemer EA (2003) Vaults: a ribonucleoprotein particle involved in drug resistance? Oncogene 22(47):7458–7467. doi:10.1038/sj.onc.1206947

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz GF, Hortobagyi GN (2004) Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Cancer 100(12):2512–2532. doi:10.1002/cncr.20298

    Article  PubMed  Google Scholar 

  11. Hayward JL, Carbone PP, Heuson JC, Kumaoka S, Segaloff A, Rubens RD (1977) Assessment of response to therapy in advanced breast cancer: a project of the programme on clinical oncology of the International union against cancer, Geneva. Switz Cancer 39(3):1289–1294

    Article  CAS  Google Scholar 

  12. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  13. Steinbach D, Lengemann J, Voigt A, Hermann J, Zintl F, Sauerbrey A (2003) Response to chemotherapy and expression of the genes encoding the multidrug resistance-associated proteins MRP2, MRP3, MRP4, MRP5, and SMRP in childhood acute myeloid leukemia. Clin Cancer Res 9(3):1083–1086

    PubMed  CAS  Google Scholar 

  14. Nishimura M, Yoshitsugu H, Naito S, Hiraoka I (2002) Evaluation of gene induction of drug-metabolizing enzymes and transporters in primary culture of human hepatocytes using high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi 122(5):339–361

    Article  PubMed  CAS  Google Scholar 

  15. Gralow JR, Burstein HJ, Wood W, Hortobagyi GN, Gianni L, von Minckwitz G, Buzdar AU, Smith IE, Symmans WF, Singh B, Winer EP (2008) Preoperative therapy in invasive breast cancer: pathologic assessment and systemic therapy issues in operable disease. J Clin Oncol 26(5):814–819. doi:10.1200/JCO.2007.15.3510

    Article  PubMed  Google Scholar 

  16. Caudle AS, Gonzalez-Angulo AM, Hunt KK, Liu P, Pusztai L, Symmans WF, Kuerer HM, Mittendorf EA, Hortobagyi GN, Meric-Bernstam F (2010) Predictors of tumor progression during neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(11):1821–1828. doi:10.1200/JCO.2009.25.3286

    Article  PubMed  Google Scholar 

  17. Precht LM, Lowe KA, Atwood M, Beatty JD (2010) Neoadjuvant chemotherapy of breast cancer: tumor markers as predictors of pathologic response, recurrence, and survival. Breast J 16(4):362–368. doi:10.1111/j.1524-4741.2010.00935.x

    PubMed  Google Scholar 

  18. Alba E, Calvo L, Albanell J, De la Haba JR, Arcusa Lanza A, Chacon JI, Sanchez-Rovira P, Plazaola A, Lopez Garcia-Asenjo JA, Bermejo B, Carrasco E, Lluch A (2012) Chemotherapy (CT) and hormonotherapy (HT) as neoadjuvant treatment in luminal breast cancer patients: results from the GEICAM/2006-03, a multicenter, randomized, phase-II study. Ann Oncol. doi:10.1093/annonc/mds132

    Google Scholar 

  19. Berruti A, Brizzi MP, Generali D, Ardine M, Dogliotti L, Bruzzi P, Bottini A (2008) Presurgical systemic treatment of nonmetastatic breast cancer: facts and open questions. Oncologist 13(11):1137–1148. doi:10.1634/theoncologist.2008-0162

    Article  PubMed  Google Scholar 

  20. Kaufmann M, von Minckwitz G, Smith R, Valero V, Gianni L, Eiermann W, Howell A, Costa SD, Beuzeboc P, Untch M, Blohmer JU, Sinn HP, Sittek R, Souchon R, Tulusan AH, Volm T, Senn HJ (2003) International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: review and recommendations. J Clin Oncol 21(13):2600–2608. doi:10.1200/JCO.2003.01.136

    Article  PubMed  Google Scholar 

  21. Fumagalli D, Desmedt C, Ignatiadis M, Loi S, Piccart M (2011) Sotiriou C (2011) Gene profiling assay and application: the predictive role in primary therapy. J Natl Cancer Inst Monogr 43:124–127. doi:10.1093/jncimonographs/lgr040

    Article  CAS  Google Scholar 

  22. Nagasaki K, Miki Y (2008) Molecular prediction of the therapeutic response to neoadjuvant chemotherapy in breast cancer. Breast Cancer 15(2):117–120. doi:10.1007/s12282-008-0031-6

    Article  PubMed  Google Scholar 

  23. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Caldas C, Aparicio S, Brenton JD, Ellis I, Huntsman D, Pinder S, Purushotham A, Murphy L, Bardwell H, Ding Z, Jones L, Liu B, Papatheodorou I, Sammut SJ, Wishart G, Chia S, Gelmon K, Speers C, Watson P, Blamey R, Green A, Macmillan D, Rakha E, Gillett C, Grigoriadis A, di Rinaldis E, Tutt A, Parisien M, Troup S, Chan D, Fielding C, Maia AT, McGuire S, Osborne M, Sayalero SM, Spiteri I, Hadfield J, Bell L, Chow K, Gale N, Kovalik M, Ng Y, Prentice L, Tavare S, Markowetz F, Langerod A, Provenzano E, Borresen-Dale AL (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352. doi:10.1038/nature10983

    PubMed  CAS  Google Scholar 

  24. Balko JM, Cook RS, Vaught DB, Kuba MG, Miller TW, Bhola NE, Sanders ME, Granja-Ingram NM, Smith JJ, Meszoely IM, Salter J, Dowsett M, Stemke-Hale K, Gonzalez-Angulo AM, Mills GB, Pinto JA, Gomez HL, Arteaga CL (2012) Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med 18:1052–1059. doi:10.1038/nm.2795

    Article  PubMed  CAS  Google Scholar 

  25. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, Vidaurre T, Holmes F, Souchon E, Wang H, Martin M, Cotrina J, Gomez H, Hubbard R, Chacon JI, Ferrer-Lozano J, Dyer R, Buxton M, Gong Y, Wu Y, Ibrahim N, Andreopoulou E, Ueno NT, Hunt K, Yang W, Nazario A, DeMichele A, O’Shaughnessy J, Hortobagyi GN, Symmans WF (2011) A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 305(18):1873–1881. doi:10.1001/jama.2011.593

    Article  PubMed  CAS  Google Scholar 

  26. Keskin S, Muslumanoglu M, Saip P, Karanlik H, Guveli M, Pehlivan E, Aydogan F, Eralp Y, Aydiner A, Yavuz E, Ozmen V, Igci A, Topuz E (2011) Clinical and pathological features of breast cancer associated with the pathological complete response to anthracycline-based neoadjuvant chemotherapy. Oncology 81(1):30–38. doi:10.1159/000330766

    Article  PubMed  CAS  Google Scholar 

  27. Kaufmann M, von Minckwitz G, Mamounas EP, Cameron D, Carey LA, Cristofanilli M, Denkert C, Eiermann W, Gnant M, Harris JR, Karn T, Liedtke C, Mauri D, Rouzier R, Ruckhaeberle E, Semiglazov V, Symmans WF, Tutt A, Pusztai L (2012) Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol 19(5):1508–1516. doi:10.1245/s10434-011-2108-2

    Article  PubMed  Google Scholar 

  28. Lacave R, Coulet F, Ricci S, Touboul E, Flahault A, Rateau JG, Cesari D, Lefranc JP, Bernaudin JF (1998) Comparative evaluation by semiquantitative reverse transcriptase polymerase chain reaction of MDR1, MRP and GSTp gene expression in breast carcinomas. Br J Cancer 77(5):694–702

    Article  PubMed  CAS  Google Scholar 

  29. Moureau-Zabotto L, Ricci S, Lefranc JP, Coulet F, Genestie C, Antoine M, Uzan S, Lotz JP, Touboul E, Lacave R (2006) Prognostic impact of multidrug resistance gene expression on the management of breast cancer in the context of adjuvant therapy based on a series of 171 patients. Br J Cancer 94(4):473–480. doi:10.1038/sj.bjc.6602958

    Article  PubMed  CAS  Google Scholar 

  30. Linn SC, Pinedo HM, van Ark-Otte J, van der Valk P, Hoekman K, Honkoop AH, Vermorken JB, Giaccone G (1997) Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer 71(5):787–795

    Article  PubMed  CAS  Google Scholar 

  31. Chevillard S, Pouillart P, Beldjord C, Asselain B, Beuzeboc P, Magdelenat H, Vielh P (1996) Sequential assessment of multidrug resistance phenotype and measurement of S-phase fraction as predictive markers of breast cancer response to neoadjuvant chemotherapy. Cancer 77(2):292–300. doi:10.1002/(SICI)1097-0142(19960115)77:2<292:AID-CNCR11>3.0.CO;2-X

    Article  PubMed  CAS  Google Scholar 

  32. Atalay C, Deliloglu Gurhan I, Irkkan C, Gunduz U (2006) Multidrug resistance in locally advanced breast cancer. Tumour Biol 27(6):309–318. doi:10.1159/000096086

    Article  PubMed  CAS  Google Scholar 

  33. Faneyte IF, Kristel PM, van de Vijver MJ (2004) Multidrug resistance associated genes MRP1, MRP2 and MRP3 in primary and anthracycline exposed breast cancer. Anticancer Res 24(5A):2931–2939

    PubMed  CAS  Google Scholar 

  34. Faneyte IF, Kristel PM, van de Vijver MJ (2001) Determining MDR1/P-glycoprotein expression in breast cancer. Int J Cancer 93(1):114–122. doi:10.1002/1097-0215(20010701)93:1<114:AID-IJC1309>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  35. Singh LC, Chakraborty A, Mishra AK, Devi TR, Sugandhi N, Chintamani C, Bhatnagar D, Kapur S, Saxena S (2012) Study on predictive role of AR and EGFR family genes with response to neoadjuvant chemotherapy in locally advanced breast cancer in Indian women. Med Oncol 29(2):539–546. doi:10.1007/s12032-011-9952-6

    Article  PubMed  CAS  Google Scholar 

  36. Gillet JP, Efferth T, Steinbach D, Hamels J, de Longueville F, Bertholet V, Remacle J (2004) Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res 64(24):8987–8993. doi:10.1158/0008-5472.CAN-04-1978

    Article  PubMed  CAS  Google Scholar 

  37. Glubb DM, Innocenti F (2011) Mechanisms of genetic regulation in gene expression: examples from drug metabolizing enzymes and transporters. WIREs Syst Biol Med 3:299–313. doi:10.1002/wsbm.125

    Article  CAS  Google Scholar 

  38. Sharma G, Mirza S, Parshad R, Srivastava A, Datta Gupta S, Pandya P, Ralhan R (2010) CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin Biochem 43(4–5):373–379. doi:10.1016/j.clinbiochem.2009.10.009

    Article  PubMed  CAS  Google Scholar 

  39. Reed K, Parissenti AM (2010) Epigenetic regulation of ABCB1 transporter expression and function. Curr Pharmacol 8(3):218–231

    CAS  Google Scholar 

  40. Johnson RA, Ince TA, Scotto KW (2001) Transcriptional repression by p53 through direct binding to a novel DNA element. J Biol Chem 276(29):27716–27720. doi:10.1074/jbc.C100121200

    Article  PubMed  CAS  Google Scholar 

  41. Thottassery JV, Zambetti GP, Arimori K, Schuetz EG, Schuetz JD (1997) p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proc Natl Acad Sci USA 94(20):11037–11042

    Article  PubMed  CAS  Google Scholar 

  42. Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH, Wang Q, Zambetti GP, Schuetz JD (2001) Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 276(42):39359–39367. doi:10.1074/jbc.M103429200

    Article  PubMed  CAS  Google Scholar 

  43. Hanafy S, Salem T, El-Aziz A, EL-Fiky B, Shokair M (2011) Influence of anticancer drugs on DNA methylation in liver of female mice. Am J Mol Biol 1:62–69. doi:0.4236/ajmb.2011.12008

    Article  CAS  Google Scholar 

  44. Samlowski WE, Leachman SA, Wade M, Cassidy P, Porter-Gill P, Busby L, Wheeler R, Boucher K, Fitzpatrick F, Jones DA, Karpf AR (2005) Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol 23(17):3897–3905. doi:10.1200/JCO.2005.06.118

    Article  PubMed  CAS  Google Scholar 

  45. Wilting RH, Dannenberg JH (2012) Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat 15:21–38. doi:10.1016/j.drup.2012.01.008

    Article  PubMed  CAS  Google Scholar 

  46. Sui H, Fan ZZ, Li Q (2012) Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells. J Int Med Res 40(2):426–435

    PubMed  CAS  Google Scholar 

  47. Weinstein-Oppenheimer CR, Henriquez-Roldan CF, Davis JM, Navolanic PM, Saleh OA, Steelman LS, Franklin RA, Robinson PJ, McMahon M, McCubrey JA (2001) Role of the Raf signal transduction cascade in the in vitro resistance to the anticancer drug doxorubicin. Clin Cancer Res 7(9):2898–2907

    PubMed  CAS  Google Scholar 

  48. Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis. doi:10.1093/carcin/bgs140

    PubMed  Google Scholar 

  49. Hu H, Gatti RA (2011) MicroRNAs: new players in the DNA damage response. J Mol Cell Biol 3(3):151–158. doi:10.1093/jmcb/mjq042

    Article  PubMed  CAS  Google Scholar 

  50. Litviakov NV, Cherdyntseva NV, Tsyganov MM, Denisov EV, Merzliakova MK, Garbukov EY, Vtorushin SV, Zavyalova MV, Slonimskaya EM (2011) Influence of gene polymorphism on the expression of the multidrug resistance genes in breast tumor during neoadjuvant chemotherapy. Med Genet (Russ) 10(10):37–43

    Google Scholar 

  51. Gervas PA, Litviakov NV, Stakcheeva MN, Miller SV, Dobrodeev AY, Garbukov EY, Babyshkina NN, Kukharev YV, Vasilieva MV, Slonimskaya EM, Belyavskaya VA, Tuzikov SA, Cherdyntseva NV (2009) Influence of apoptosis and repair gene polymorphism on neoadjuvant chemotherapy response of malignant tumors. Sib J Oncol (Russ) 4(34):41–47

    Google Scholar 

  52. Zavyalova MV, Perelmuter VM, Vtorushin SV, Denisov EV, Litvyakov NV, Slonimskaya EM, Cherdyntseva NV (2011) The presence of alveolar structures in invasive ductal NOS breast carcinoma is associated with lymph node metastasis. Diagn Cytopathol. doi:10.1002/dc.21852

    PubMed  Google Scholar 

  53. Denisov E, Tsyganov M, Tashireva L, Zavyalova M, Perelmuter V, Cherdyntseva N (2012) Intratumoral heterogeneity in expression of chemotherapy response markers in invasive ductal breast carcinoma NOS. 4th WIN Symposium: efficacy of biomarkers and personalized cancer therapeutics, Paris, France. Ann Oncol 23(5):v21–v22

    Google Scholar 

  54. Zavyalova MV, Litvyakov NV, Garbukov EY, Vtorushin SV, Stakheeva MN, Savenkova OV, Kritskaya NG, Perelmuter VM, Slonimskaya EM, Cherdyntseva NV (2008) Relationship between tumor sensitivity to neoadjuvant chemotherapy and histologic pattern of primary tumor in unicentric infiltrating ductal breast carcinoma. Sib J Oncol (Russ) 6:30–34

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Federal Target Program "Academic and Teaching Staff of Innovative Russia in 2009–2013" (#16.740.11.0606 and #8291) of the Ministry of Education and Science of the Russian Federation, the Russian Federation President Grant (#MK-1259.2012.7), and a grant from the OPTEK company (#1/11KTS).

Conflict of interest

The other authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda V. Cherdyntseva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Supplementary material 2 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litviakov, N.V., Cherdyntseva, N.V., Tsyganov, M.M. et al. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer Chemother Pharmacol 71, 153–163 (2013). https://doi.org/10.1007/s00280-012-1992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1992-x

Keywords

Navigation