Skip to main content

Advertisement

Log in

Therapeutic potential and molecular mechanism of a novel sulfonamide anticancer drug, indisulam (E7070) in combination with CPT-11 for cancer treatment

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Indisulam (N-(-3-chloro-7-indolyl)-1,4-benzenedisulfonamide; E7070) is an experimental anticancer agent. Microarray analysis indicates that indisulam downregulates several genes involved in drug resistance, and this finding led us to test the effect of combining indisulam with other anticancer drugs. We investigated the antitumor effect and mechanism of synergism when indisulam was administered in combination with CPT-11.

Methods

In vitro cytotoxic activity was examined using a cell counter kit, and the combination effect was determined by isobologram analysis. The level of topoisomerase IIα was measured by Western blotting. The in vivo antitumor effect was assessed in mice inoculated with human colorectal cancer SW620 cells.

Results

Isobologram analysis indicated that a 24-h exposure to indisulam and SN-38, an active metabolite of CPT-11, had a synergistic effect in HCT116 and SW620 cells and an additive effect in HCT15 and WiDr cells. Prolongation of exposure to 48 h resulted in a synergistic effect in HCT15 and WiDr cells. Treatment with SN-38 alone increased the amount of intracellular topoisomerase IIα in all cell lines tested. Co-treatment with indisulam suppressed the SN-38-induced upregulation of topoisomerase IIα after 24 h of exposure in HCT116 and SW620 cells and after 48 h of exposure in HCT15 and WiDr cells. This apparent association between a synergistic effect and suppression of SN-38-mediated upregulation of topoisomerase IIα suggests that indisulam enhances SN-38 cytotoxicity by suppressing topoisomerase IIα upregulation to compensate for topoisomerase I inhibition by SN-38. Synergy was also observed in xenografted tumors and was accompanied by complete suppression of topoisomerase IIα upregulation induced by CPT-11 treatment.

Conclusion

These observations prompted the clinical evaluation of indisulam and CPT-11 combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Owa T, Yoshino H, Okauchi T et al (1999) Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J Med Chem 42:3789–3799

    Article  PubMed  CAS  Google Scholar 

  2. Owa T, Yoshino H, Okauchi T et al (2002) Synthesis and biological evaluation of N-(7-indolyl)-3-pyridinesulfonamide derivatives as potent antitumor agents. Bioorg Med Chem Lett 12:2097–2100

    Article  PubMed  CAS  Google Scholar 

  3. Supuran CT (2003) Indisulam: an anticancer sulfonamide in clinical development. Expert Opin Investig Drugs 12:283–287

    Article  PubMed  CAS  Google Scholar 

  4. Haddad RI, Weinstein LJ, Wieczorek TJ et al (2004) A phase II clinical and pharmacodynamic study of E7070 in patients with metastatic, recurrent, or refractory squamous cell carcinoma of the head and neck: modulation of retinoblastoma protein phosphorylation by a novel chloroindolyl sulfonamide cell cycle inhibitor. Clin Cancer Res 10:4680–4687

    Article  PubMed  CAS  Google Scholar 

  5. Smyth JF, Aamdal S, Awada A et al (2005) Phase II study of E7070 in patients with metastatic melanoma. Ann Oncol 16:158–161

    Article  PubMed  CAS  Google Scholar 

  6. Talbot DC, von Pawel J, Cattell E et al (2007) A randomized phase II pharmacokinetic and pharmacodynamics study of indisulam as second-line therapy in patients with advanced non-small cell lung cancer. Clin Cancer Res 13:1816–1822

    Article  PubMed  CAS  Google Scholar 

  7. Ozawa Y, Sugi NH, Nagasu T et al (2001) E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur J Cancer 37:2275–2282

    Article  PubMed  CAS  Google Scholar 

  8. Owa T, Ozawa Y, Yokoi A et al (2004) Identification of response marker genes of the antitumor sulfonamide indisulam (E7070). Eur J Cancer 2(8):128

    Google Scholar 

  9. Tsuruo T, Matsuzaki T, Matsushita M et al (1988) Antitumor effect of CPT-11, a new derivative of camptothecin, against pleiotropic drug-resistant tumors in vitro and in vivo. Cancer Chemother Pharmacol 21:71–74

    Article  PubMed  CAS  Google Scholar 

  10. Weekes J, Lam AK, Sebesan S et al (2009) Irinotecan therapy and molecular targets in colorectal cancer: a systemic review. World J Gastroenterol 15:3597–3602

    Article  PubMed  CAS  Google Scholar 

  11. Kim R, Hirabayashi N, Nishiyama M et al (1992) Experimental studies on biochemical modulation targeting topoisomerase I and II in human tumor xenografts in nude mice. Int J Cancer 50:760–766

    Article  PubMed  CAS  Google Scholar 

  12. Whitacre CM, Zborowska E, Gordon NH et al (1997) Topotecan increases topoisomerase IIalpha levels and sensitivity to treatment with etoposide in schedule-dependent process. Cancer Res 57:1425–1428

    PubMed  CAS  Google Scholar 

  13. Sugimoto Y, Tsukahara S, Oh-hara T et al (1990) Elevated expression of DNA topoisomerase II in camptothecin-resistant human tumor cell lines. Cancer Res 50:7962–7965

    PubMed  CAS  Google Scholar 

  14. Eng WK, McCabe FL, Tan KB et al (1990) Development of a stable camptothecin-resistant subline of P388 leukemia with reduced topoisomerase I content. Mol Pharmacol 38:471–480

    PubMed  CAS  Google Scholar 

  15. Woessner RD, Eng WK, Hofmann GA et al (1992) Camptothecin hyper-resistant P388 cells: drug-dependent reduction in topoisomerase I content. Oncol Res 4:481–488

    PubMed  CAS  Google Scholar 

  16. Slinker BK (1998) The statistics of synergism. J Mol Cell Cardiol 30:723–731

    Article  PubMed  CAS  Google Scholar 

  17. Kano Y, Akutsu M, Tsunoda S et al (2000) In vitro cytotoxic effects of fludarabine (2-F-ara-A) in combination with commonly used antileukemic agents by isobologram analysis. Leukemia 14:379–388

    Article  PubMed  CAS  Google Scholar 

  18. Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    Article  PubMed  CAS  Google Scholar 

  19. Ferguson PJ, Fisher MH, Stephenson J et al (1988) Combined modalities of resistance in etoposide-resistant human KB cell lines. Cancer Res 48:5956–5964

    PubMed  CAS  Google Scholar 

  20. Lefevre D, Riou JF, Ahomadegbe JC et al (1991) Study of molecular markers of resistance to m-AMSA in a human breast cancer cell line. Decrease of topoisomerase II and increase of both topoisomerase I and acidic glutathione S transferase. Biochem Pharmacol 41:1967–1979

    Article  PubMed  CAS  Google Scholar 

  21. Riou JF, Grondard L, Petitgenet O et al (1993) Altered topoisomerase I activity and recombination activating gene expression in a human leukemia cell line resistant to doxorubicin. Biochem Pharmacol 46:851–861

    Article  PubMed  CAS  Google Scholar 

  22. Wang JC (1985) DNA topoisomerases. Annu Rev Biochem 54:665–697

    Article  PubMed  CAS  Google Scholar 

  23. Oda Y, Owa T, Sato T et al (2003) Quantitative chemical proteomics for identifying candidate drug targets. Anal Chem 75:2159–2165

    Article  PubMed  CAS  Google Scholar 

  24. Kim HD, Tomida A, Ogiso Y, Tsuruo T (1999) Glucose-regulated stresses cause degradation of DNA topoisomerase IIalpha by inducing nuclear proteasome during G1 cell cycle arrest in cancer cells. J Cell Physiol 180:97–104

    Article  PubMed  CAS  Google Scholar 

  25. Yun J, Tomida A, Andoh T, Tsuruo T (2004) Interaction between glucose-regulated destruction domain of DNA topoisomerase IIalpha and MPN domain of Jab1/CSN5. J Biol Chem 279:31296–31303

    Article  PubMed  CAS  Google Scholar 

  26. Kimura T, Kudoh S, Hirata K (2011) Review of the management of relapsed small-cell lung cancer with amrubicin hydrochloride. Clin Med Insights Oncol 5:23–34

    Article  PubMed  CAS  Google Scholar 

  27. D’Arpa P, Liu LF (1989) Topoisomerase-targeting antitumor drugs. Biochim Biophys Acta 989:163–177

    PubMed  Google Scholar 

  28. Kimura T (2001) In vitro schedule dependency in the treatment of topoisomerase I and II inhibitor. Osaka City Med J 47:33–41

    PubMed  CAS  Google Scholar 

  29. Kaufmann SH (1991) Antagonism between camptothecin and topoisomerase II-directed chemotherapeutic agents in a human leukemia cell line. Cancer Res 51:1129–1136

    PubMed  CAS  Google Scholar 

  30. Furue H (1999) Combination chemotherapy—present status and problems. Gan To Kagaku Ryoho 26:589–596

    PubMed  CAS  Google Scholar 

  31. Rothenberg ML, Kuhn JG, Burris HA III et al (1993) Phase I and pharmacokinetic trial of weekly CPT-11. J Clin Oncol 11:2194–2204

    PubMed  CAS  Google Scholar 

  32. Terret C, Zanetta S, Roché H et al (2003) Phase I clinical and pharmacokinetic study of E7070, a novel sulfonamide given as a 5-day continuous infusion repeated every 3 weeks in patients with solid tumours. A study by the EORTC Early Clinical Study Group (ECSG). Eur J Cancer 39:1097–1104

    Article  PubMed  CAS  Google Scholar 

  33. Dittrich C, Dumez H, Calvert H et al (2003) Phase I and pharmacokinetic study of E7070, a chloroindolyl-sulfonamide anticancer agent, administered on a weekly schedule to patients with solid tumors. Clin Cancer Res 9:5195–5204

    PubMed  CAS  Google Scholar 

  34. Raymond E, ten Bokkel Huinink WW, Taïeb J et al (2002) Phase I and pharmacokinetic study of E7070, a novel chloroindolyl sulfonamide cell-cycle inhibitor, administered as a one-hour infusion every three weeks in patients with advanced cancer. J Clin Oncol 20:3508–3521

    Article  PubMed  CAS  Google Scholar 

  35. Hammond LA, Eckardt JR, Ganapathi R, Burris HA, Rodriguez GA, Eckhardt SG et al (1998) A phase I and translational study of sequential administration of the topoisomerase I and II inhibitors topotecan and etoposide. Clin Cancer Res 4:1459–1467

    PubMed  CAS  Google Scholar 

  36. Rubin E, Wood V, Bharti A, Trites D, Lynch C, Hurwitz S et al (1995) A phase I and pharmacokinetic study of a new camptothecin derivative, 9-aminocamptothecin. Clin Cancer Res 1:269–276

    PubMed  CAS  Google Scholar 

  37. Licitra EJ, Vyas V, Nelson K, Musanti R, Beers S, Thomas C et al (2003) Phase I evaluation of sequential topoisomerase targeting with irinotecan/cisplatin followed by etoposide in patients with advanced malignancy. Clin Cancer Res 9:1673–1679

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Fukamizu of the University of Tsukuba for giving advice on making the draft plan. SN-38 was kindly provided by Yakult Co. Ltd.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Ozawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 189 kb)

Supplementary material 2 (PPT 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozawa, Y., Kusano, K., Owa, T. et al. Therapeutic potential and molecular mechanism of a novel sulfonamide anticancer drug, indisulam (E7070) in combination with CPT-11 for cancer treatment. Cancer Chemother Pharmacol 69, 1353–1362 (2012). https://doi.org/10.1007/s00280-012-1844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1844-8

Keywords

Navigation