Skip to main content

Advertisement

Log in

BACPTDP: a water-soluble camptothecin pro-drug with enhanced activity in hypoxic/acidic tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Hypoxia is a common feature of solid tumors. Up-regulation of hypoxia-inducing factor-1 (HIF-1) occurs in the majority of primary malignant tumors and in two-thirds of metastases, while most normal tissues are negative. HIF-1 induces the glycolytic phenotype, which creates an acidic extracellular microenvironment and associated pH gradient such that drugs that are weak acids are selectively taken up and retained in acidic tumors. 7-Butyl-10-amino-camptothecin (BACPT) is a prime example of an agent that can exploit the tumor pH gradient for enhanced selectivity.

Purpose

This study profiles the antitumor activity of BACPT in vitro and its water-soluble dipeptide ester, BACPTDP, in vivo.

Methods

Antitumor activity was evaluated by proliferation assays in cancer cell lines and in murine xenograft models for human neuroblastoma (IMR-32), colon (HT29), ovarian (SK-OV-3), pancreatic (Panc-1), glioma (SF-295) and non-small-cell lung (NCI-H460) cancers.

Results

BACPT had superior antiproliferative activity compared to established drugs in monolayer cultures of human neuroblastoma and pancreatic tumor cell lines and in 3-dimensional histocultures of colon and primary ovarian cancer. Antitumor activity of BACPTDP was comparable to irinotecan in IMR-32, HT29, SF-295 and NCI-H460 xenografts, significantly greater in SK-OV-3 and in Panc-1 where complete regressions were observed. Combination of BACPT with gemcitabine produced additive to synergistic interactions in Panc-1 cells that were independent of drug ratio and optimal when gemcitabine was administered 24 h prior to BACPT.

Conclusions

BACPTDP is a water-soluble camptothecin pro-drug that spontaneously generates the lipid-soluble active agent, BACPT. This topoisomerase inhibitor exploits solid tumor physiology for improved selectivity and activity against multiple tumor types with particular promise for use in treating pediatric neuroblastoma and pancreatic carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CPT:

Camptothecin

BACPTDP:

7-butyl-10-amino-camptothecin-(20S) β-alanine-lysine

References

  1. Adams DJ (2005) The impact of tumor physiology on camptothecin-based drug development. Curr Pharma Med Chem Anticancer Agents 5:1–13

    Article  CAS  Google Scholar 

  2. Adams DJ, Dewhirst MW, Flowers JL, Gamcsik MP, Colvin OM, Manikumar G, Wani MC, Wall ME (2000) Camptothecin analogues with enhanced antitumor activity at acidic pH. Cancer Chemother Pharmacol 46:263–271

    Article  PubMed  CAS  Google Scholar 

  3. Adams DJ, Black RD, Bolick NG, Richardson RA, Spasojevic I, Manikumar G, Wani MC, Dewhirst MW, Colvin OM (2005) Utilization of a fiber optic biosensor to assess uptake of a fluorescent camptothecin in human tumor xenografts. AACR Meet Abstracts 981-a-

  4. Adams DJ, da Silva MW, Flowers JL, Kohlhagen G, Pommier Y, Colvin OM, Manikumar G, Wani MC (2006) Camptothecin analogs with enhanced activity against human breast cancer cells. I. Correlation of potency with lipophilicity and persistence in the cleavage complex. Cancer Chemother Pharmacol 57:135–144

    Article  PubMed  CAS  Google Scholar 

  5. Adams DJ, Wahl ML, Flowers JL, Sen B, Colvin M, Dewhirst MW, Manikumar G, Wani MC (2006) Camptothecin analogs with enhanced activity against human breast cancer cells. II. Impact of the tumor pH gradient. Cancer Chemother Pharmacol 57:145–154

    Article  PubMed  CAS  Google Scholar 

  6. Adams DJ, Sandvold ML, Myhren F, Jacobsen TF, Giles F, Rizzieri DA (2008) Anti proliferative activity of ELACYT (TM) (CP-4055) in combination with cloretazine (VNP40101 M), idarubicin, gemcitabine, irinotecan and topotecan in human leukemia and lymphoma cells. Leuk Lymphoma 49:786–797

    Article  PubMed  CAS  Google Scholar 

  7. Adams D, Brueim S, Maelandsmo G, Fodstad O, Myhren F, Sandvold M (2009) Drug combinations with gemcitabine 5’-elaidic acid ester (CP-4126) that exhibit synergistic activity in pancreatic cancer. Annual Meeting of the American Association for Cancer Research, AACR, Denver, CO

    Google Scholar 

  8. Biedler J, Helson L, Spengler B (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33:2643–2652

    PubMed  CAS  Google Scholar 

  9. Burke PJ, Senter PD, Meyer DW, Miyamoto JB, Anderson M, Toki BE, Manikumar G, Wani MC, Kroll DJ, Jeffrey SC (2009) Design, synthesis, and biological evaluation of antibody-drug conjugates comprised of potent camptothecin analogues. Bioconj Chem 20:1242–1250

    Article  CAS  Google Scholar 

  10. Burris HA, Rivkin S, Reynolds R, Harris J, Wax A, Gerstein H, Mettinger KL, Staddon A (2005) Phase II trial of oral rubitecan in previously treated pancreatic cancer patients. Oncologist 10:183–190

    Article  PubMed  CAS  Google Scholar 

  11. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  PubMed  CAS  Google Scholar 

  12. Ciccarone V, Spengler B, Meyers M, Biedler J, Ross R (1989) Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res 49:219–225

    PubMed  CAS  Google Scholar 

  13. Clements MK, Jones CB, Cumming M, Daoud SS (1999) Antiangiogenic potential of camptothecin and topotecan. Cancer Chemother Pharmacol 44:411–416

    Article  PubMed  CAS  Google Scholar 

  14. Croce AC, Bottiroli G, Supino R, Favini E, Zuco V, Zunino F (2004) Subcellular localization of the camptothecin analogues, topotecan and gimatecan. Biochem Pharmacol 67:1035–1045

    Article  PubMed  CAS  Google Scholar 

  15. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity. J Am Coll Surg 198:953–959

    Article  PubMed  Google Scholar 

  16. Flowers JL, Ludeman SM, Gamcsik MP, Colvin OM, Shao KL, Boal JH, Springer JB, Adams DJ (2000) Evidence for a role of chloroethylaziridine in the cytotoxicity of cyclophosphamide. Cancer Chemother Pharmacol 45:335–344

    Article  PubMed  CAS  Google Scholar 

  17. Flowers JL, Hoffman RM, Driscoll TA, Wall ME, Wani MC, Manikumar G, Friedman HS, Dewhirst M, Colvin OM, Adams DJ (2003) The activity of camptothecin analogues is enhanced in histocultures of human tumors and human tumor xenografts by modulation of extracellular pH. Cancer Chemother Pharmacol 52:253–261

    Article  PubMed  CAS  Google Scholar 

  18. Furukawa T, Kubota T, Hoffman RM (1995) Clinical-applications of the histoculture drug response assay. Clin Cancer Res 1:305–311

    PubMed  CAS  Google Scholar 

  19. Gabr A, Kuin A, Aalders M, ElGawly H, Smets LA (1997) Cellular pharmacokinetics and cytotoxicity of camptothecin and topotecan at normal and acidic pH. Cancer Res 57:4811–4816

    PubMed  CAS  Google Scholar 

  20. Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: Insights through mathematical models. Cancer Res 63:3847–3854

    PubMed  CAS  Google Scholar 

  21. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198

    PubMed  CAS  Google Scholar 

  22. Gerweck LE, Vijayappa S, Kozin S (2006) Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 5:1275–1279

    Article  PubMed  CAS  Google Scholar 

  23. Guiotto A, Canevari M, Orsolini P, Lavanchy O, Deuschel C, Kaneda N, Kurita A, Matsuzaki T, Yaegashi T, Sawada S, Veronese FM (2004) Synthesis, characterization, and preliminary in vivo tests of new poly(ethylene glycol) conjugates of the antitumor agent 10-amino-7-ethylcamptothecin. J Med Chem 47:1280–1289

    Article  PubMed  CAS  Google Scholar 

  24. Heiden MGV, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  Google Scholar 

  25. Hoffman RM (1991) 3-Dimensional histoculture—origins and applications in cancer-research. Cancer Cells Mon Rev 3:86–92

    CAS  Google Scholar 

  26. Kanzawa F, Nishio K, Fukuoka K, Fukuda M, Kunimoto T, Saijo N (1997) Evaluation of synergism by a novel three-dimensional model for the combined action of cisplatin and etoposide on the growth of a human small-cell lung-cancer cell line, SBC-3. Int J Cancer 71:311–319

    Article  PubMed  CAS  Google Scholar 

  27. Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919–922

    Article  PubMed  CAS  Google Scholar 

  28. Kruszewski S, Kruszewska DM (2008) Affinity of new anticancer agent, 7-trimethylsilyl-ethyl-10-amino-camptothecin, to membranes and HSA determined by fluorescence spectroscopy methods. Optica Applicata 38:625–633

    CAS  Google Scholar 

  29. Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66:1207–1218

    Article  PubMed  CAS  Google Scholar 

  30. O’Leary JJ, Shapiro RL, Ren CJ, Chuang N, Cohen HW, Potmesil M (1999) Antiangiogenic effects of camptothecin analogues 9-amino-20(S)camptothecin, topotecan, and CPT-11 studied in the mouse cornea model. Clin Cancer Res 5:181–187

    PubMed  Google Scholar 

  31. Onda T, Nakamura I, Seno C, Matsumoto S, Kitagawa M, Okamoto K, Nishikawa K, Suzuki M (2006) Superior antitumor activity of NK012, 7-ethyl-10-hydroxycamptothecin-incorporating micellar nanoparticle, to irinotecan. AACR Meet Abstracts 720-b-

  32. Papish SW, Ramanathan RK, Pincus J, Hirmand M, Burris HA (2005) Patients rescued by crossover to rubitecan in phase III study of rubitecan capsules versus 5-FU in pancreatic cancer. J Clin Oncol 23:349S

    Google Scholar 

  33. Pencreach E, Guerin E, Nicolet C, Lelong-Rebel I, Voegeli AC, Oudet P, Larsen AK, Gaub MP, Guenot D (2009) Marked activity of irinotecan and rapamycin combination toward colon cancer cells in vivo and in vitro is mediated through cooperative modulation of the mammalian target of rapamycin/hypoxia-inducible factor-1 alpha axis. Clin Cancer Res 15:1297–1307

    Article  PubMed  CAS  Google Scholar 

  34. Rapisarda A, Uranchimeg B, Scudiero DA, Selby M, Sausville EA, Shoemaker RH, Melillo G (2002) Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res 62:4316–4324

    PubMed  CAS  Google Scholar 

  35. Rapisarda A, Uranchimeg B, Sordet O, Pommier Y, Shoemaker RH, Melillo G (2004) Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res 64:1475–1482

    Article  PubMed  CAS  Google Scholar 

  36. Sands H, Mishra A, Stoeckler JD, Hollister B, Chen SF (2002) Preclinical activity of an i.v. formulation of rubitecan in IDD-P (TM) against human solid tumor xenografts. Anti-Cancer Drugs 13:965–975

    Article  PubMed  CAS  Google Scholar 

  37. Shanks RH, Rizzieri DA, Flowers JL, Colvin OM, Adams DJ (2005) Preclinical evaluation of gemcitabine combination regimens for application in acute myeloid leukemia. Clin Cancer Res 11:4225–4233

    Article  PubMed  CAS  Google Scholar 

  38. Singh B, Li RG, Xu L, Poluri A, Patel S, Shaha AR, Pfister D, Sherman E, Goberdhan A, Hoffman RM, Shah J (2002) Prediction of survival in patients with head and neck cancer using the histoculture drug response assay. Head Neck J Sci Spec Head Neck 24:437–442

    Google Scholar 

  39. Stubbs M, Bashford CL, Griffiths JR (2003) Understanding the tumor metabolic phenotype in the genomic era. Curr Mol Med 3:49–59

    Article  PubMed  CAS  Google Scholar 

  40. Tomida A, Tsuruo T (1999) Drug resistance mediated by cellular stress response to the microenvironment of solid tumors. Anti Cancer Drug Design 14:169–177

    PubMed  CAS  Google Scholar 

  41. Tumilowicz J, Nichols W, Cholon J, Greene A (1970) Definition of a continuous human cell line derived from neuroblastoma. Cancer Res 30:2110–2118

    PubMed  CAS  Google Scholar 

  42. Vassal G, Pondarre C, Cappelli C, Terrier-Lacombe MJ, Boland I, Morizet J, Benard J, Venuat AM, Ardouin P, Hartmann O, Gouyette A (1997) DNA-topoisomerase I, a new target for the treatment of neuroblastoma. Eur J Cancer 33:2011–2015

    Article  PubMed  CAS  Google Scholar 

  43. Wachsberger PR, Landry J, Storck C, Davis K, O’Hara MD, Owen CS, Leeper DB, Coss RA (1997) Mammalian cells adapted to growth at pH 6.7 have elevated HSP27 and are resistant to cisplatin. Int J Hypertherm 13:251–255 (discussion)

    Google Scholar 

  44. Yaegashi T, Sawada S, Nagata H, Furuta T, Yokokura T, Miyasaka T (1994) Synthesis and antitumor-activity of 20(s)-camptothecin derivatives—a-ring-substituted 7-ethylcamptothecins and their e-ring-modified water-soluble derivatives. Chem Pharm Bull 42:2518–2525

    PubMed  CAS  Google Scholar 

  45. Zhang HL, Barcelo JM, Lee B, Kohlhagen G, Zimonjic DB, Popescu NC, Pommier Y (2001) Human mitochondrial topoisomerase I. Proc Natl Acad Sci USA 98:10608–10613

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Small Business Innovation Research grant CA125871 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, D.J., Waud, W.R., Wani, M.C. et al. BACPTDP: a water-soluble camptothecin pro-drug with enhanced activity in hypoxic/acidic tumors. Cancer Chemother Pharmacol 67, 855–865 (2011). https://doi.org/10.1007/s00280-010-1388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1388-8

Keywords

Navigation