Skip to main content

Advertisement

Log in

Putative chemopreventive molecules can increase Nrf2-regulated cell defense in some human cancer cell lines, resulting in resistance to common cytotoxic therapies

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Nrf2 is a key transcription factor, which induces a cytoprotective gene array. Nrf2 is regulated at the posttranslational level through proteasomal degradation through an interaction with the adapter protein Keap1. High levels of Nrf2, resulting from a loss of function mutation in Keap1, were reported in chemoresistant non-small cell lung cancer. We observed very low levels of Nrf2 and of Nrf2-regulated detoxification proteins as a frequent phenotype in the more chemosensitive breast cancer, and when engineering increased Nrf2 levels, we found resistance to both doxorubicin and paclitaxel. We here show that basal Nrf2 levels in different cell lines correlate with their respective sensitivity to a common cytotoxic chemotherapy. Nrf2 and its regulated genes and proteins are the targets of a major strategy in cancer prevention. Molecules that interfere with the Nrf2–Keap1–Cul3 protein–protein interactions result in higher levels of Nrf2. Both naturally occurring and synthetic molecules with this effect have been suggested as clinical chemopreventive agents, including molecules derived from cruciferous vegetables such as the isothiocyanate sulforaphane and even green tea polyphenols. Here, we determine the impact of these putative chemopreventive agents on the sensitivity of established cancer cell lines to chemotherapy. We confirmed that these molecules do increase Nrf2 and detoxification enzyme levels in breast cancer cell lines with very low basal Nrf2 levels, and this is associated with significant chemoresistance to cytotoxic drugs. Both effects are less in another breast cancer cell line with intermediate Nrf2, and in lung cancer cells with high Nrf2, these same molecules have no effect on Nrf2 but do actually enhance chemoresitance. While the details of dose and schedule of these agents require further study in in vivo models, these data sound a cautionary note for the use of these agents in patients with established cancers who are undergoing chemotherapy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hayes JD, McMahon M (2001) Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett 174(2):103–113

    Article  CAS  PubMed  Google Scholar 

  2. Kwak MK, Egner PA, Dolan PM, Ramos-Gomez M, Groopman JD, Itoh K et al (2001) Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutat Res 480–481:305–315

    PubMed  Google Scholar 

  3. Rushmore TH, Kong AN (2002) Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 3(5):481–490

    Article  CAS  PubMed  Google Scholar 

  4. Nakata K, Tanaka Y, Nakano T, Adachi T, Tanaka H, Kaminuma T et al (2006) Nuclear receptor-mediated transcriptional regulation in Phase I, II, and III xenobiotic metabolizing systems. Drug Metab Pharmacokinet 21(6):437–457

    Article  CAS  PubMed  Google Scholar 

  5. McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI et al (2001) The Cap’n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61(8):3299–3307

    CAS  PubMed  Google Scholar 

  6. Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P et al (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98(6):3410–3415

    Article  CAS  PubMed  Google Scholar 

  7. Maher JM, Dieter MZ, Aleksunes LM, Slitt AL, Guo G, Tanaka Y, Scheffer GL, Chan JY, Manautou JE, Chen Y, Dalton TP, Yamamoto M, Klaassen CD (2007) Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology 46(5):1597–1610

    Article  CAS  PubMed  Google Scholar 

  8. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24(19):8477–8486

    Article  CAS  PubMed  Google Scholar 

  9. Furukawa M, Xiong Y (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25(1):162–171

    Article  CAS  PubMed  Google Scholar 

  10. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953

    Article  CAS  PubMed  Google Scholar 

  11. Giudice A, Montella M (2006) Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 28(2):169–181

    Article  CAS  PubMed  Google Scholar 

  12. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10):768–780

    Article  CAS  PubMed  Google Scholar 

  13. Tan XL, Spivack SD (2009) Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: a review. Lung Cancer 65(2):129–137

    Article  PubMed  Google Scholar 

  14. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO et al (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3(10):e420

    Article  PubMed  Google Scholar 

  15. Ohta T, Lijima K, Miyamoto K, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T, Shibata T, Yamamoto M, Hirohashi S (2008) Loss of Keap 1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 1;68(5):1303–1309

    Google Scholar 

  16. Loignon M, Miao W, Hu L, Bier A, Tarek A, Bismar P, Scrivens J, Mann K, Basik M, Fiset P, Batist Z, Batist G (2009) Cul3 overexpression depletes Nrf2 in breast cancer and is associated with sensitivity to carcinogens oxidative stress and to chemotherapy. Mol Cancer Ther 8(8):2432–2440

    Article  CAS  PubMed  Google Scholar 

  17. Steinkellner H (2005) Coffee consumption induces GSTP in plasma and protects lymphocytes against (±)-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide induced DNA-damage: results of controlled human intervention trials. Mutat Res 11;591(1–2):264–275

    Google Scholar 

  18. Higgins YLG (2008) Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein. Toxicol Appl Pharmacol 226(3):328–337

    Article  CAS  PubMed  Google Scholar 

  19. Huber WW (2004) Potential chemoprotective effects of the coffee components kahweol and cafestol palmitates via modification of hepatic N-acetyltransferase and glutathione S-transferase activities. Environ Mol Mutagen 44(4):265–276

    Article  CAS  PubMed  Google Scholar 

  20. Yuan JH (2008) Protective effects of epigallocatechin gallate on colon preneoplastic lesion induced by 2-amino-3-methylimidazo [4, 5-f] quinoline in mice. Mol Med 28:414–416

    Google Scholar 

  21. Hu L (2008) Modification of gamma-radiation response in mice by green tea polyphenols. Phytother Res 22:1380–1383

    Article  Google Scholar 

  22. Yuan J-H, Li Y-Q, Yang X-Y (2008) Protective effects of epigallocatechin gallate on colon preneoplastic lesion induced by 2-amino-3-methylimidazo [4, 5-f] quinoline in mice. Mol Med 14:590–598

    Article  CAS  PubMed  Google Scholar 

  23. Miao W, Hu L, Kandouz M, Batist G (2003) Oltipraz is a bifunctional inducer activating both phase I and phase II drug-metabolizing enzymes via the xenobiotic responsive element. Mol Pharmacol 64(2):346–354

    Article  CAS  PubMed  Google Scholar 

  24. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11(5):1475–1489

    Article  CAS  PubMed  Google Scholar 

  25. Riedl MA, Saxon A, Diaz-Sanchez D (2009) Oral sulforaphane increases phase II antioxidant enzymes in the human upper airway. Clin Immunol. 130(3):244–251

    Article  CAS  PubMed  Google Scholar 

  26. Nakagawa K, Nakayama K, Nakamura M, Sookwong P, Tsuduki T, Niino H, Kimura F, Miyazawa T (2009) Effects of co-administration of tea epigallocatechin-3-gallate (EGCG) and caffeine on absorption and metabolism of EGCG in humans. Biosci Biotechnol Biochem 73(9):2014–2017

    Article  CAS  PubMed  Google Scholar 

  27. Mi L, Gan N, Cheema A, Dakshanamurthy S, Wang X, Yang DC, Chung FL (2009) Cancer preventive isothiocyanates induce selective degradation of cellular α- and β-tubulins by proteasomes. J Biol Chem 284(25):17039–17051

    Article  CAS  PubMed  Google Scholar 

  28. Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N, Kikuchi N, Satoh H, Sakamoto T, Hizawa N, Itoh K, Yamamoto M (2009) Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 15(10):3423–3432

    Article  CAS  PubMed  Google Scholar 

  29. Adachi N (2008) (−)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis 29:1986–1993

    Article  CAS  PubMed  Google Scholar 

  30. Fimognari C, Nusse M, Lenzi M, Sciuscio D, Cantelli-Forti G, Hrelia P (2006) Sulforaphane increases the efficacy of doxorubicin in mouse fibroblasts characterized by p53 mutations. Mutation Res. 601:92–101

    CAS  PubMed  Google Scholar 

  31. Selga E, Noé V, Ciudad CJ (2008) Transcriptional regulation of aldo-keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis. Biochem Pharmacol 75(2):414–426

    Article  CAS  PubMed  Google Scholar 

  32. Fagerholm R, Hofstetter B, Tommiska J, Aaltonen K, Vrtel R, Syrjäkoski K, Kallioniemi A, Kilpivaara O, Mannermaa A, Kosma VM, Uusitupa M, Eskelinen M, Kataja V, Aittomäki K, von Smitten K, Heikkilä P, Lukas J, Holli K, Bartkova J, Blomqvist C, Bartek J, Nevanlinna H (2008) NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 40(7):844–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Drs. Mark Hannink and Moulay Alaoui-Jamali for insightful discussions; Dr. Voker Blank for providing recombinant Nrf2 reagents; Dr. Lesley Alpert for providing clinical breast cancer specimens; Dr. John D. Haynes for providing the antibodies against GSTA1/2, GSTP1, γGCS and NQO1; Dr. Andrew Stolz for providing the antibody against the AKR1C. This work was supported by the grants from the Canadian Institute of Health Research, the Cancer Research Society and a US army breast cancer research concept award (BC033714), and the Fonds de la recherche en santé du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Batist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Miao, W., Loignon, M. et al. Putative chemopreventive molecules can increase Nrf2-regulated cell defense in some human cancer cell lines, resulting in resistance to common cytotoxic therapies. Cancer Chemother Pharmacol 66, 467–474 (2010). https://doi.org/10.1007/s00280-009-1182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1182-7

Keywords

Navigation