Skip to main content

Advertisement

Log in

PNAS-4, a novel pro-apoptotic gene, can potentiate antineoplastic effects of cisplatin

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

PNAS-4, a novel pro-apoptotic gene activated during the early response to DNA damage, can inhibit proliferation via apoptosis when overexpressed in some tumor cells. The objectives of this study were to determine whether PNAS-4 could enhance apoptosis induced by cisplatin besides its induction of apoptosis, and to evaluate the usefulness of combined treatment with mouse PNAS-4 (mPNAS-4) gene therapy and low-dose cisplatin chemotherapy in the inhibition of tumor growth in colon carcinoma (CT26) and Lewis lung carcinoma (LL/2) murine models.

Methods

In this study, the in vitro growth-inhibitory and pro-apoptotic effects of PNAS-4 and/or cisplatin on CT26, LL/2, and SKOV3 cancer cells were assessed by MTT assay, flow cytometric analysis, DNA fragmentation, and morphological analysis, respectively. The in vivo antitumor activity of combined treatment with mPNAS-4 gene therapy and low-dose cisplatin were evaluated in the inhibition of tumor growth in colon carcinoma (CT26) and Lewis lung carcinoma (LL/2) murine models. Tumor volume and survival time were observed. Induction of apoptosis was also assessed in tumor tissues.

Results

In vitro, PNAS-4 inhibited proliferation of colon carcinoma (CT26), Lewis lung carcinoma (LL/2) and human ovarian cancer (SKOV3) cell lines via apoptosis, and significantly enhanced the apoptosis of CT26, LL/2, and SKOV3 cells induced by cisplatin. In vivo systemic administration of expression plasmid encoding mPNAS-4 (pcDNA3.1-mPS) and cisplatin, significantly decreased tumor growth through increased tumor cell apoptosis compared to treatment with mPNAS-4 or cisplatin alone.

Conclusions

Our data suggests that the combined treatment with mPNAS-4 plus cisplatin may augment the induction of apoptosis in tumor cells in vitro and in vivo, and that the augmented antitumor activity in vivo may result from the increased induction of apoptosis. The present study may provide a novel way to augment the antitumor efficacy of cytotoxic chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HLE B-3:

Human lens epithelial cells

pcDNA3.1-mPS:

pcDNA3.1 Expression plasmid encoding mouse PNAS-4 gene

pcDNA3.1-hPS:

pcDNA3.1 Expression plasmid encoding human PNAS-4 gene

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling

References

  1. Reed E (1998) Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treatment Rev 24(5):331–344

    Article  CAS  Google Scholar 

  2. Dhanalakshmi S, Agarwal P, Glode LM, Agarwal R (2003) Silibinin sensitizes human prostate carcinoma DU145 cells to cisplatin- and carboplatin-induced growth inhibition and apoptotic death. Int J Cancer 106(5):699–705

    Article  PubMed  CAS  Google Scholar 

  3. Niibe Y, Karasawa K, Hayakawa K (2004) Ten-year disease-free survival of a small cell lung cancer patient with brain metastasis treated with chemoradiotherapy. Anticancer Res 24(3):2097–2100

    PubMed  Google Scholar 

  4. Duvillard C, Ponelle T, Chapusot C, Piard F, Romanet P, Chauffert B (2004) EDTA enhances the antitumor efficacy of intratumoral cisplatin in s.c. grafted rat colon tumours. Anticancer Drugs 15(3):295–299

    Article  PubMed  CAS  Google Scholar 

  5. Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol 67:93–130

    Article  PubMed  CAS  Google Scholar 

  6. Mizuho T, Hiroto I, Tomoko I, Shun H, Takao Y, Kosei Y, Kimitoshi K (2003) Activating transcription factor 4 increases the cisplatin resistance of human cancer cell lines. Cancer Res 63(24):8592–8595

    Google Scholar 

  7. Li G, Tian L, Hou JM, Ding ZY, He QM, Feng P, Wen YJ, Xiao F, Yao B, Zhang R, Peng F, Jiang Y, Luo F, Zhao X, Zhang L, Zhou Q, Wei YQ (2005) Improved therapeutic effectiveness by combining recombinant CXC chemokine ligand 10 with cisplatin in solid tumors. Clin Cancer Res 11(11):4217–4224

    Article  PubMed  CAS  Google Scholar 

  8. Folkman J (1995) Seminars in medicine of the Beth Israel Hospital, Boston: clinical applications of research on angiogenesis. N Engl J Med 333(26):1757–1763

    Article  PubMed  CAS  Google Scholar 

  9. Marshall E (1998) The road blocks to angiogenesis blockers. Science (Wash DC) 280:997–999

    Article  CAS  Google Scholar 

  10. Santin AD, Zhan F, Bignotti E, Siegel ER, Cane S, Bellone S, Palmieri M, Anfossi S, Thomas M, Burnett A, Kay HH, Roman JJ, Obrien T, Tian E, Cannon MJ, Shaughnessy J, Pecorelli S (2005) Gene expression profiles of primary HPV16- and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy. Virology 331(2):269–291

    Article  PubMed  CAS  Google Scholar 

  11. Best CJ, Gillespie JW, Yi YJ, Chandramouli GV, Perlmutter MA, Gathright Y, Erickson HS, Georgevich L, Tangrea MA, Duray PH, González S, Velasco A, Linehan WM, Matusik RJ, Price DK, Figg WD, Emmert-Buck MR, Chuaqui RF (2005) Molecular alterations in primary prostate cancer after androgen ablation therapy. Clin Cancer Res 11(19):6823–6834

    Article  PubMed  CAS  Google Scholar 

  12. Filippov V, Filippova M, Duerksen-Hughes PJ (2007) The early response to DNA damage can lead to activation of alternative splicing activity resulting in CD44 splice pattern changes. Cancer Res 67(16):7621–7630

    Article  PubMed  CAS  Google Scholar 

  13. Forrest MS, Lan Q, Hubbard AE, Zhang L, Vermeulen R, Zhao X, Li G, Wu YY, Shen M, Yin S, Chanock SJ, Rothman N, Smith MT (2005) Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers. Environ Health Perspect 113(6):801–807

    Article  PubMed  CAS  Google Scholar 

  14. James ER, Fresco VM, Robertson LL (2005) Glucocorticoid-induced changes in the global gene expression of lens epithelial cells. J Ocul Pharmacol Ther 21(1):11–27

    Article  PubMed  CAS  Google Scholar 

  15. Filippov V, Filippova M, Sinha D, Duerksen-Hughes PJ (2005) PNAS-4: a novel pro-apoptotic gene activated during the early response to DNA damage. Proc Am Assoc Cancer Res 46:717

    Google Scholar 

  16. Mo DL, Zhu ZM, te Pas MFW, Li XY, Yang SL, Wang H, Wang HL, Li K (2008) Characterization, expression profiles, intracellular distribution and association analysis of porcine PNAS-4 gene with production traits. BMC Genet 9:40

    Article  PubMed  CAS  Google Scholar 

  17. Yao SH, Xie LF, Qian ML, Yang HS, Zhou L, Zhou Q, Yan F, Gou LT, Wei YQ, Zhao X, Mo XM (2008) Pnas4 is a novel regulator for convergence and extension during vertebrate gastrulation. FEBS Lett 582(15):2325–2332

    Article  PubMed  CAS  Google Scholar 

  18. Zhang P, Wang CT, Yan F, Gou L, Tong AP, Cai F, Li Q, Deng HX, Wei YQ (2008) Prokaryotic expression of a novel mouse pro-apoptosis protein PNAS-4 and application of its polyclonal antibodies. Braz J Med Biol Res 41(6):504–511

    Article  PubMed  CAS  Google Scholar 

  19. Yang F, Li ZY, Deng HX, Yang HS, Yan F, Qian ZY, Chen LJ, Wei YQ, Zhao X (2008) Efficient inhibition of ovarian cancer growth and prolonged survival by transfection with a novel pro-apoptotic gene, hPNAS-4, in a mouse model. Oncology 75(3–4):137–144

    Article  PubMed  CAS  Google Scholar 

  20. Su JM, Wei YQ, Tian L, Zhao X, Yang L, He QM, Wang Y, Lu Y, Wu Y, Liu F, Liu JY, Yang JL, Lou YY, Hu B, Niu T, Wen YJ, Xiao F, Deng HX, Li J, Kan B (2003) Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res 63(3):600–607

    PubMed  CAS  Google Scholar 

  21. Zhang R, Tian L, Chen LJ, Xiao F, Hou JM, Zhao X (2006) Combination of MIG (CXCL9) chemokine gene therapy with low-dose cisplatin improves therapeutic efficacy against murine carcinoma. Gene Ther 13(17):1263–1271

    Article  PubMed  CAS  Google Scholar 

  22. He QM, Wei YQ, Tian L, Zhao X, Su JM, Yang L, Lu Y, Kan B, Lou YY, Huang MJ, Xiao F, Liu JY, Hu B, Luo F, Jiang Y, Wen YJ, Deng HX, Li J, Niu T, Yang JL (2003) Inhibition of tumor growth with a vaccine based on xenogeneic homologous fibroblast growth factor receptor-1 in mice. J Biol Chem 278(24):21831–21836

    Article  PubMed  CAS  Google Scholar 

  23. Furihata T, Hosokawa M, Satoh T, Chiba K (2004) Synergistic role of specificity proteins and upstream stimulatory factor 1 in transactivation of the mouse carboxylesterase 2/microsomal acylcarnitine hydrolase gene promoter. Biochem J 384(Pt 1):101–110

    PubMed  CAS  Google Scholar 

  24. Blezinger P, Wang J, Gondo M, Quezada A, Mehrens D, French M, Singhal A, Sullivan S, Rolland A, Ralston R, Min W (1999) Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol 17(4):343–348

    Article  PubMed  CAS  Google Scholar 

  25. Wei YQ, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A (1994) Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 54(18):4952–4957

    PubMed  CAS  Google Scholar 

  26. Sanna MG, Correia JS, Ducrey O, Lee J, Nomoto K, Schrantz N, Deveraux QL, Ulevitch RJ (2002) IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol 22(6):1754–1766

    Article  PubMed  CAS  Google Scholar 

  27. Wu SY, Loke HN, Rehemtulla A (2002) Ultraviolet radiation-induced apoptosis is mediated by Daxx. Neoplasia 4(6):486–492

    Article  PubMed  CAS  Google Scholar 

  28. Sauter BV, Martinet O, Zhang WJ, Mandeli J, Woo SL (2000) Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. Proc Natl Acad Sci U S A 97(9):4802–4807

    Article  PubMed  CAS  Google Scholar 

  29. Wei YQ, Wang QR, Zhao X, Yang L, Tian L, Lu Y, Kang B, Lu CJ, Huang MJ, Lou YY, Xiao F, He QM, Shu JM, Xie XJ, Mao YQ, Lei S, Luo F, Zhou LQ, Liu CE, Zhou H, Jiang Y, Peng F, Yuan LP, Li Q, Wu Y, Liu JY (2000) Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med 6(10):1160–1166

    Article  PubMed  CAS  Google Scholar 

  30. Dings RPM, Yokoyama Y, Ramakrishnan S, Griffioen AW, Mayo KH (2003) The designed angiostatic peptide anginex synergistically improves chemotherapy and antiangiogenesis therapy with angiostatin. Cancer Res 63(2):382–385

    PubMed  CAS  Google Scholar 

  31. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481

    Article  Google Scholar 

  32. Peto R, Pelo J (1972) Asymptotically efficient rank invariant test procedures. J R Stat Soc Ser A Gene 135:185–206

    Article  Google Scholar 

  33. Li J, Wang F, Haraldson K, Protopopov A, Duh FM, Geil L, Kuzmin I, Minna JD, Stanbridge E, Braga E, Kashuba VI, Klein G, Lerman MI, Zabarovsky ER (2004) Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res 64(18):6438–6443

    Article  PubMed  CAS  Google Scholar 

  34. Sfikakis PP, Souliotis VL, Katsilambros N, Markakis K, Vaiopoulos G, Tsokos GC, Panayiotidis P (1996) Downregulation of interleukin-2 and α-chain interleukin-2 receptor biosynthesis by cisplatin in human peripheral lymphocytes. Clin Immunol Immunopathol 79(1):43–49

    Article  PubMed  CAS  Google Scholar 

  35. Garzetti GG, Ciavattini A, Provinciali M, Valensise H, Romanini C, Fabris N (1994) Influence of neoadjuvant polychemotherapy on natural killer cell activity in patients with locally advanced cervical squamous carcinoma. Gynecol Oncol 52(1):39–43

    Article  PubMed  CAS  Google Scholar 

  36. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH (1997) ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3(6):639–645

    Article  PubMed  CAS  Google Scholar 

  37. Alemany R, Gomez-Manzano C, Balague C, Yung WK, Curiel DT, Kyritsis AP, Fueyo J (1999) Gene therapy for gliomas: molecular targets, adenoviral vectors, and oncolytic adenoviruses. Exp Cell Res 252(1):1–12

    Article  PubMed  CAS  Google Scholar 

  38. Eastman A, Rigas JR (1999) Modulation of apoptosis signaling pathways and cell cycle regulation. Semin Oncol 26(5 Suppl 16):7–16

    PubMed  CAS  Google Scholar 

  39. Fichtinger-Schepman AM, van der Veer JL, den Hartog JH, Lohman PH, Reedijk J (1985) Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry 24(3):707–713

    Article  PubMed  CAS  Google Scholar 

  40. Vaisman A, Varchenko M, Said I, Chaney SG (1997) Cell cycle changes associated with formation of Pt-DNA adducts in human ovarian carcinoma cells with different cisplatin sensitivity. Cytometry 27(1):54–64

    Article  PubMed  CAS  Google Scholar 

  41. Faivre S, Chan D, Salinas R, Woynarowska B, Woynarowski JM (2003) DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem Pharmacol 66(2):225–237

    Article  PubMed  CAS  Google Scholar 

  42. Alexander DR (2004) Oncogenic tyrosine kinases, DNA repair and survival: the role of Bcl-xL deamidation in transformation and genotoxic therapies. Cell Cycle 3(5):584–587

    PubMed  CAS  Google Scholar 

  43. Jensen R, Glazer PM (2004) Cell-interdependent cisplatin killing by Ku/DNA dependent protein kinase signaling transduced through gap junctions. Proc Natl Acad Sci USA 101(16):6134–6139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ning Xu for her advice, discussion, and critical review of the manuscript, and Dr. Yang Wan for their technical support. This work was supported by National Key Basic Research Program of China (2004CB518800, 2005CB522506).

Conflicts of interest statement

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-xin Deng or Xia Zhao.

Additional information

Z. Yuan and F. Yan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Z., Yan, F., Wang, Ys. et al. PNAS-4, a novel pro-apoptotic gene, can potentiate antineoplastic effects of cisplatin. Cancer Chemother Pharmacol 65, 13–25 (2009). https://doi.org/10.1007/s00280-009-0998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0998-5

Keywords

Navigation