Skip to main content
Log in

Biological properties of 4-methyl-2,7-diamino-5,10-diphenyl-4,9-diazapyrenium hydrogensulfate (ADAP)

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Objective

4-Methyl-2,7-diamino-5,10-diphenyl-4,9-diazapyrenium hydrogensulfate (ADAP) is a potential antitumor compound because of its DNA and RNA intercalating ability. In this study, cellular uptake, intracellular distribution as well as mechanism of action, antitumor activity in vitro and toxicity in vivo of ADAP were investigated.

Methods

Based on the fluorescence properties of ADAP, its entry and distribution into live cells were analyzed by fluorescence microscopy. The in vitro antiproliferative activity was determined using MTT test. For screening of topoisomerase II-targeted effects of ADAP, the cell-free assay and immunoband depletion assay were used. Expression of the genes c-mos, c-N-ras, c-Ki-ras, c-H-ras, p53 and caspase 3 in Caco-2 cells treated with ADAP was examined by RT-PCR. Toxicity in vivo was determined using C3HHf/Bu Zgr/Hr mice treated by single or multiple doses of ADAP at a concentration of 25 mg/kg.

Results

ADAP in μM concentrations entered into MIAPaCa-2 cell’s cytoplasm in 5 min and into nuclei in 60 min after administration. Intracellular distribution of ADAP depended on the period of treatment time. ADAP (0.1–100 μM) strongly inhibited the growth of both mouse (FsaR, SCCVII) and human tumor cells (HeLa, Caco-2, HT-29, MIAPaCa-2, HBL, HEp-2, SW620, MCF-7) compared to its weak cytotoxicity on controls and normal cells (WI38). Results of both topoisomerase II assays showed that ADAP is not a topoisomerase II poison. Expression of investigated genes was dependent on the incubation time, except for p53 and c-H-ras. Morphological changes in tissues and organs of mice were not observed. Results of patohistological analysis have been confirmed by hematological and clinical-chemical analysis of blood of treated and non-treated animals.

Conclusion

ADAP is a strongly bioactive compound with antitumor potential in vitro. The antitumor potential in vivo remains to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferlay J, Parkin MD, Pisani P (1998) Globocan: Cancer incidence and mortality worldwide. International Agency for Research on Cancer, IARC Cancer Base, Lyon, France, pp 3

  2. Howard CV, Newby JA (2004) Could the increase in cancer incidence be related to recent environmental changes. In: Nicolopoulou-Stamati P, Hens L, Howard CV, Van Larebeke L (eds) Cancer as an environmental disease. Kluwer, Dordrecht

    Google Scholar 

  3. Li Q, Xu W (2005) Novel anticancer targets in drug discovery in postgenomic age. Curr Med Chem Anticancer Agents 5:53–63

    Article  PubMed  CAS  Google Scholar 

  4. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–30

    Article  PubMed  CAS  Google Scholar 

  5. Demeunyck M, Bailly C, Wilson WD (2002) DNA and RNA binders: from small molecules to drugs. Wiley, New York

    Google Scholar 

  6. Silverman RB (2004) The organic chemistry of drug design and drug action, 2nd edn. Elsevier, San Diego

    Google Scholar 

  7. Taylor IW, Milthorpe BK (1980) An evaluation of DNA fluorochromes, staining techiques and analysis for flow cytometry. J Histochem Cytochem 28(11):1224–1232

    PubMed  CAS  Google Scholar 

  8. Benson SC, Mathies RA, Glazer AN (1993) Heterodimeric DNA-binding dyes designed for energy transfer: stability and applications of the DNA complexes. Nucleic Acids Res 21(24):5720–5726

    Article  PubMed  CAS  Google Scholar 

  9. Biver T, De Biasi A, Secco F, Venturini M, Yarmoluk S (2005) Cyanine dyes as intercalating agents: kinetic and thermodinamic studies on the DNA/Cyan40 and DNA/CCyan2 systems. Biophys J 89:374–383

    Article  PubMed  CAS  Google Scholar 

  10. Yang XL, Wang AH-J (1999) Structural studies of atom-specific drugs on DNA. Pharmacol Ther 83:181–215

    Article  PubMed  CAS  Google Scholar 

  11. Brańa MF, Cacho M, Gradillas A, Pascual-Teresa B, Ramos A (2001) Intercalators as anticancer drugs. Curr Pharm Des 7:1745–1780

    Article  PubMed  Google Scholar 

  12. Martinez R, Chacon-Garcia L (2005) The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem 12(2):127–151

    PubMed  CAS  Google Scholar 

  13. Subramanian D, Sommer FC, Muller MT (2001) ICE Bioassay. In: Osheroff N, Bjornsti M-A (eds) DNA Topoisomerase protocols. Enzymology and drugs. Humana Press, Totowa, pp 137–147

    Google Scholar 

  14. Ehlert JE, Kubbutat MHG (2001) Apoptosis and its relevance in cancer therapy. Onkologie 24:433–440

    Article  PubMed  CAS  Google Scholar 

  15. Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200

    Article  PubMed  CAS  Google Scholar 

  16. Akimitsu N, Kamura K, Toné S, Sakaguchi A, Kikuchi A, Hamamoto H, Sekimizu K (2003) Induction of apoptosis by depletion of topoisomerase II in mammalian cells. Biochem Biophys Res Commun 307:301–307

    Article  PubMed  CAS  Google Scholar 

  17. Kaina B (2003) DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol 66:1547–1554

    Article  PubMed  CAS  Google Scholar 

  18. Palm BS, Piantanida I, Žinić M, Schneider H-J (2000) The interaction of new 4,9-diazapyrenium compounds with double stranded nucleic acids. J Chem Soc – Perkin Trans II:385–392

    Article  Google Scholar 

  19. Piantanida I, Tomšić V, Žinić M (2000) 4,9-Diazapyrenium cations. Synthesis, physico-chemical properties and binding of nucleotides in water. J Chem Soc Perkin Trans II:375–383

    Google Scholar 

  20. Piantanida I, Palm BS, Žinić M, Schneider H-J (2001) A new 4,9-diazapyrenium intercalator for single- and double-stranded nucleic acids: distinct differences from related diazapyrenium compounds and ethidium bromide. J Chem Soc Perkin Trans II(9):1808–1816

    Google Scholar 

  21. Yu D-H, MacDonald J, Josephs S, Liu Q, Nguy V, Tor Y, Wong-Staal F, Li Q-X (2006) MDDD, a 4,9-diazapyrenium derivative, is selectively toxic to glioma cells by inducing growth arrest at G0/G1 independently of p53. Invest New Drugs 24:489–498

    Article  PubMed  CAS  Google Scholar 

  22. Steiner-Biočić I, Glavaš-Obrovac L, Karner I, Piantanida I, Žinić M, Pavelić K, Pavelić J (1996) 4,9-Diazapyrenium dications induce apoptosis in human tumor cells. Anticancer Res 16:3705–3708

    PubMed  Google Scholar 

  23. Roknić S, Glavaš-Obrovac L, Karner I, Piantanida I, Žinić M, Pavelić K (2000) In vitro cytotoxicity of three 4,9-diazapyrenium hydrogensulfate derivatives on different human tumor cell lines. Chemotherapy 46:143–149

    Article  PubMed  Google Scholar 

  24. Marczi S, Glavaš-Obrovac L, Karner I (2005) Induction of apoptosis of human tumor cells by a 4,9-diazapyrenium derivative and its effects on topoisomerase-II action. Chemotherapy 51:217–222

    Article  PubMed  CAS  Google Scholar 

  25. Piantanida I, Žinić M, Marczi S, Glavaš-Obrovac L (2007) Bis-4,9-diazapyrenium dications: synthesis of the methylenedibenzyl-analogue, interactions with nucleotides, DNA, RNA. The antitumor activity of all till now prepared analogues. J Phys Org Chem 20:285–295

    Article  CAS  Google Scholar 

  26. Mickisch G, Fajta S, Keilhauer G, Schlick E, Tschada R, Alken P (1990) Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT). Urol Res 18:131–136

    Article  PubMed  CAS  Google Scholar 

  27. Burden DA, Froelich-Ammon J, Osheroff N (2001) Topoisomerase I-mediated cleavage of plasmid DNA. In: Osheroff N, Bjornsti M-A (eds) DNA topoisomerase protocols. Enzymology and drugs. Humana Press Inc., New Yersey, pp 283–289

    Google Scholar 

  28. Kaufmann SH, Svingen PA (2001) Immunoblot analysis and bend depletion assay. In: Bjornsti M-A, Osheroff N (eds), DNA topoisomerase protocols. DNA topology and enzymes. Humana Press Inc., New Yersey, pp 253–268

    Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  30. Gedda L, Silvander M, Sjöberg S, Tjarks W, Carlsson J (1997) Cytotoxicity and subcellular localization of boronated phenanthridinium analogues. Anticancer Drug Des 12:671–685

    PubMed  CAS  Google Scholar 

  31. Haldane A, Finlay GJ, Hay MP, Denny WA, Baguley BC (1999) Cellular uptake of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA). Anticancer Drug Des 14:275–280

    PubMed  CAS  Google Scholar 

  32. Hicks KO, Pruijn FB, Baguley BC, Wilson WR (2001) Extravascular transport of the DNA intercalator and topoisomerase poison N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA): diffusion and metabolism in multicellular layers of tumor cells. J Pharmacol Exp Ther 297:1088–1098

    PubMed  CAS  Google Scholar 

  33. Lansiaux A, Dassonneville L, Facompré M, Kumar A, Stephens CE, Bajic M, Tanious F, Wilson WD, Boykin DW, Bailly C (2002) Distribution of furamidine analogues in tumor cells: influence of the number of positive charges. J Med Chem 45:1994–2002

    Article  PubMed  CAS  Google Scholar 

  34. Cline S, Osheroff N (1999) Cytosine arabinoside lesions are position-specific topoisomerase II poisons and stimulate DNA cleavage mediated by the human type II enzymes. J Biol Chem 274:29740–29743

    Article  PubMed  CAS  Google Scholar 

  35. Rowe TC, Grabowski D, Ganapathi R (2001) Isolation of covalent enzyme-DNA complexes. In: Osheroff N, Bjornsti M-A (eds) DNA topoisomerase protocols. Enzymology and drugs. Humana Press Inc, New Jersey, pp 129–136

    Google Scholar 

  36. Kim SG, Sung M, Kang KW, Kim SH, Son MH, Kim WB (2001) DA-125, a novel anthracycline derivative showing high-affinity DNA binding and topoisomerase II inhibitory activities, exerts cytotoxicity via c-Jun N-terminal kinase pathway. Cancer Chemother Pharmacol 47:511–518

    Article  PubMed  CAS  Google Scholar 

  37. Bal C, Baldeyrou B, Moz F, Lansiaux A, Colson P, Kraus-Berthier L, Leonce S, Pierre A, Boussard M-F, Rousseau A, Wierzbicki M, Bailly C (2004) Novel antitumor indenoindole derivatives targeting DNA and topoisomerase II. Biochem Pharmacol 68:1911–1922

    Article  PubMed  CAS  Google Scholar 

  38. Marsh KL, Willmore E, Tinelli S, Cornarotti M, Mectes EL, Capranico G, Fisher LM, Austin CA (1996) Amsacrine-promoted DNA cleavage site determinants for the two human DNA topoisomerase II isoforms alpha and beta. Biochem Pharmacol 52:1675–1685

    Article  PubMed  CAS  Google Scholar 

  39. Finlay GJ, Atwell GJ, Baguley BC (1999) Inhibition of the action of the topoisomerase II poison amsacrine by simple aniline derivatives: evidence for drug-protein interactions. Oncol Res 11(6):249–254

    PubMed  CAS  Google Scholar 

  40. Yew N, Strobel M, Vande Woude GF (1993) Mos and the cell cycle: the molecular basis of the transformed phenotype. Curr Opin Genet Dev 3(1):19–25

    Article  PubMed  CAS  Google Scholar 

  41. Fukasawa K, Vande Woude GF (1997) Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol Cell Biol 17(1):506–518

    PubMed  CAS  Google Scholar 

  42. Lyons SK, Clarke AR (1997) Apoptosis and carcinogenesiy. Br Medical Bull 53:554–569

    CAS  Google Scholar 

  43. Djelloul S, Forgue-Lafitte M-E, Hermelin B, Mareel M, Bruyneel E, Baldi A, Giordano A, Chastre E, Gespach C (1997) Enterocyte differentiation is compatible with SV40 large T expression and loss of p53 function in human colonic Caco-2 cells. FEBS Lett 406:234–242

    Article  PubMed  CAS  Google Scholar 

  44. Pietsch EC, Humbey O, Murphy ME (2006) Polymorphisms in the p53 pathway. Oncogene 25:1602–1611

    Article  PubMed  CAS  Google Scholar 

  45. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  46. Mayo MW, Wang CY, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ, Baldwin AS Jr (1997) Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812–1815

    Article  PubMed  CAS  Google Scholar 

  47. Shapiro P (2001) Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Crit Rev Clin Lab Sci 39(4–5):285–330

    Article  Google Scholar 

  48. Moon A (2006) Differential functions of Ras for malignant phenotypic conversion. Arch Pharm Res 29(2):113–122

    Article  PubMed  CAS  Google Scholar 

  49. Ward RL, Todd AV, Santiago F, O’Connor T, Hawkins NJ (1997) Activation of the K-ras oncogene in colorectal neoplasms is associated with decreased apoptosis. Cancer 79(6):1106–1113

    Article  PubMed  CAS  Google Scholar 

  50. Downward J (1998) ras signaling and apoptosis. Curr Opin Genet Dev 8:49–54

    Article  PubMed  CAS  Google Scholar 

  51. Bowen C, Voeller HJ, Kikly K, Gelmann EP (1999) Synthesis of procaspase-3 and -7 during apoptosis in prostate cancer cells. Cell Death Differ 6:394–401

    Article  PubMed  CAS  Google Scholar 

  52. Moore DM (2000) Hematology of the mouse. In: Feldman BV, Zinkl JG, Jain NC (eds) Schalm’s veterinary hematology. Lippincot Williams & Wilkons, Philadelphia, pp 1219–1224

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Ministry of Science, Education and Sport, Republic of Croatia, grants 0127111 and 219-0982914-2176. We are grateful to Prof. Dr. Mirjana Knežević-Kostović and M.Sc. Neda Cetina for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubica Glavaš-Obrovac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marczi, S., Glavaš-Obrovac, L., Belovari, T. et al. Biological properties of 4-methyl-2,7-diamino-5,10-diphenyl-4,9-diazapyrenium hydrogensulfate (ADAP). Cancer Chemother Pharmacol 62, 595–604 (2008). https://doi.org/10.1007/s00280-007-0643-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0643-0

Keywords

Navigation