Skip to main content

Advertisement

Log in

Further mechanistic unravelling of the influence of the cell cycle effects on the radiosensitising mechanism of vinflunine, in vitro

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Vinflunine is an innovative microtubule inhibitor belonging to the vinca alkaloid class that possesses radiosensitising properties, which could lead to promising activity in chemoradiation studies in the clinic.

Method

In the current study, different incubation times with vinflunine, immediately before radiation and different time intervals between vinflunine treatment and radiation were investigated, in vitro, using four different human tumour cell lines differing in cell type and p53 status. Results were correlated with the cell cycle distribution at the moment of radiation, in order to elucidate the role of cell cycle perturbations caused by vinflunine on its radiosensitising effect.

Results

Radiosensitisation was observed in all cell lines, and maximal radiosensitisation was both cell line- and schedule-dependent. The cell cycle distributions were cell line-dependent also, and when correlated with the observed radiosensitising effects could explain many (but not all) of the radiosensitising properties of vinflunine.

Conclusion

The cell cycle perturbations caused by vinflunine may definitely have an impact on its radiosensitising potential, but other factors must play a role because of some unaccountable differences between cell cycle distribution and the radiosensitising potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennouna J, Breton JL, Tourani JM, Ottensmeier C, O’Brien M, Kosmidis P, Huat TE, Pinel MC, Colin C, Douillard JY (2006) Vinflunine—an active chemotherapy for treatment of advanced non-small-cell lung cancer previously treated with a platinum-based regimen: results of a phase II study. Br J Cancer 94:1383–1388

    Article  PubMed  CAS  Google Scholar 

  2. Bennouna J, Campone M, Delord JP, Pinel MC (2005) Vinflunine: a novel antitubulin agent in solid malignancies. Expert Opin Investig Drugs 14:1259–1267

    Article  PubMed  CAS  Google Scholar 

  3. Bonfil RD, Russo DM, Binda MM, Delgado FM, Vincenti M (2002) Higher antitumor activity of vinflunine than vinorelbine against an orthotopic murine model of transitional cell carcinoma of the bladder. Urol Oncol 7:159–166

    Article  PubMed  CAS  Google Scholar 

  4. Choy H, MacRae RM (2003) Chemoradiation: Biological principles and perspectives. In: Choy H (ed) Chemoradiation in Cancer Therapy. Humana Press, New Jersey, pp 3–22

    Google Scholar 

  5. Choy H, Rodriguez FF, Koester S, Hilsenbeck S, Von Hoff DD (1993) Investigation of taxol as a potential radiation sensitizer. Cancer 71:3774–3778

    Article  PubMed  CAS  Google Scholar 

  6. Culine S, Theodore C, De Santis M, Bui B, Demkow T, Lorenz J, Rolland F, Delgado FM, Longerey B, James N (2006) A phase II study of vinflunine in bladder cancer patients progressing after first-line platinum-containing regimen. Br J Cancer 94:1395–1401

    Article  PubMed  CAS  Google Scholar 

  7. Edelstein MP, Wolfe LA 3rd, Duch DS (1996) Potentiation of radiation therapy by vinorelbine (Navelbine) in non-small cell lung cancer. Semin Oncol 23:41–47

    PubMed  CAS  Google Scholar 

  8. Erenpreisa J, Cragg MS (2001) Mitotic death: a mechanism of survival? A review. Cancer Cell Int 1:1–7

    Article  PubMed  Google Scholar 

  9. Etievant C, Kruczynski A, Barret JM, Tait AS, Kavallaris M, Hill BT (2001) Markedly diminished drug resistance-inducing properties of vinflunine (20′,20′-difluoro-3′,4′-dihydrovinorelbine) relative to vinorelbine, identified in murine and human tumour cells in vivo and in vitro. Cancer Chemother Pharmacol 48:62–70

    Article  PubMed  CAS  Google Scholar 

  10. Fahy J (2001) Modifications in the <<upper>> or Velbenamine part of the Vinca alkaloids have major implications for tubulin interacting activities. Curr Pharm Des 7:1181–1197

    Article  PubMed  CAS  Google Scholar 

  11. Fertil B, Dertinger H, Courdi A, Malaise EP (1984) Mean inactivation dose: a useful concept for intercomparison of human cell survival curves. Radiat Res 99:73–84

    Article  PubMed  CAS  Google Scholar 

  12. Fukuoka K, Arioka H, Iwamoto Y, Fukumoto H, Kurokawa H, Ishida T, Tomonari A, Suzuki T, Usuda J, Kanzawa F, Kimura H, Saijo N, Nishio K (2002) Mechanism of vinorelbine-induced radiosensitization of human small cell lung cancer cells. Cancer Chemother Pharmacol 49:385–390

    Article  PubMed  CAS  Google Scholar 

  13. Fukuoka K, Arioka H, Iwamoto Y, Fukumoto H, Kurokawa H, Ishida T, Tomonari A, Suzuki T, Usuda J, Kanzawa F, Saijo N, Nishio K (2001) Mechanism of the radiosensitization induced by vinorelbine in human non-small cell lung cancer cells. Lung Cancer 34:451–460

    Article  PubMed  CAS  Google Scholar 

  14. Galmarini CM, Falette N, Tabone E, Levrat C, Britten R, Voorzanger Rousselot N, Roesch Gateau O, Vanier Viornery A, Puisieux A, Dumontet C, ELYPSE Study Group, UKCCSG and UK Canc Cytogenetics Group (2001) Inactivation of wild-type p53 by a dominant negative mutant renders MCF-7 cells resistant to tubulin-binding agent cytotoxicity. Br J Cancer 85:902–908

    Article  PubMed  CAS  Google Scholar 

  15. Gorodetsky R, Levdansky L, Ringel I, Vexler A (1998) Paclitaxel-induced modification of the effects of radiation and alterations in the cell cycle in normal and tu;or mammalian cells. Radiat Res 150:283–291

    Article  PubMed  CAS  Google Scholar 

  16. Hau PM, Siu WY, Womg N, Lai PBS, Poon RYC (2006) Polyploidization increases the sensitivity to DNA-damaging agents in mammalian cells. FEBS Lett 580:4727–4736

    Article  PubMed  CAS  Google Scholar 

  17. Hill BT, Fiebig HH, Waud WR, Poupon MF, Colpaert F, Kruczynski A (1999) Superior in vivo experimental antitumour activity of vinflunine, relative to vinorelbine in a panel of human tumour xenografts. Eur J Cancer 35:512–520

    Article  PubMed  CAS  Google Scholar 

  18. Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA (2000) Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int 24:621–633

    Article  PubMed  CAS  Google Scholar 

  19. Kruczynski A, Barret JM, Etievant C, Colpaert F, Fahy J, Hill BT (1998) Antimitotic and tubulin-interacting properties of vinflunine, a novel fluorinated Vinca alkaloid. Biochem Pharmacol 55:635–648

    Article  PubMed  CAS  Google Scholar 

  20. Kruczynski A, Colpaert F, Tarayre JP, Mouillard P, Fahy J, Hill BT (1998) Preclinical in vivo antitumor activity of vinflunine, a novel fluorinated Vinca alkaloid. Cancer Chemother Pharmacol 41:437–447

    Article  PubMed  CAS  Google Scholar 

  21. Kruczynski A, Hill BT (2001) Vinflunine, the latest Vinca alkaloid in clinical development—a review of its preclinical anticancer properties. Crit Rev Oncol Hematol 40:159–173

    Article  PubMed  CAS  Google Scholar 

  22. Liebmann J, Cook JA, Fisher J, Teague D, Mitchell JB (1994) In vitro studies of Taxol as a radiation sensitizer in human tumor cells. J Natl Cancer Inst 86:441–446

    Article  PubMed  CAS  Google Scholar 

  23. Lobert S, Fahy J, Hill BT, Duflos A, Etievant C, Correia JJ (2000) Vinca alkaloid-induced tubulin spiral formation correlates with cytotoxicity in the leukemic L1210 cell line. Biochemistry 39:12053–12062

    Article  PubMed  CAS  Google Scholar 

  24. McIntyre JA, Castaner J (2004) Vinflunine—Antimitotic—Vinca alkaloid. Drugs Future 29:574–580

    Article  CAS  Google Scholar 

  25. Milas L, Milas MM, Mason KA (1999) Combination of taxanes with radiation: preclinical studies. Semin Radiat Oncol 9:12–26

    PubMed  CAS  Google Scholar 

  26. Ngan VK, Bellman K, Hill BT, Wilson L, Jordan MA (2001) Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic vinca alkaloids vinorelbine and its newer derivative vinflunine. Mol Pharmacol 60:225–232

    PubMed  CAS  Google Scholar 

  27. Ngan VK, Bellman K, Panda D, Hill BT, Jordan MA, Wilson L (2000) Novel actions of the antitumor drugs vinflunine and vinorelbine on microtubules. Cancer Res 60:5045–5051

    PubMed  CAS  Google Scholar 

  28. Okouneva T, Hill BT, Wilson L, Jordan MA (2003) The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol Cancer Ther 2:427–436

    PubMed  CAS  Google Scholar 

  29. Papazisis KT, Geromichalos GD, Dimitriadis KA, Kortsaris AH (1997) Optimization of the sulforhodamine B colorimetric assay. J Immunol Methods 208:151–158

    Article  PubMed  CAS  Google Scholar 

  30. Pauwels B, Korst AEC, de Pooter CMJ, Pattyn GGO, Lambrechts HAJ, Baay MFD, Lardon F, Vermorken JB (2003) Comparison of the sulforhodamine B assay and the clonogenic assay for in vitro chemoradiation studies. Cancer Chemother Pharmacol 51:221–226

    PubMed  CAS  Google Scholar 

  31. Plasswilm L, Cordes N, Sauer R (1998) Schedule-dependent interaction of paclitaxel (Taxol) and irradiation in vitro. Radiat Oncol Investig 6:10–17

    Article  PubMed  CAS  Google Scholar 

  32. Simoens C, Vermorken JB, Korst AE, Pauwels B, De Pooter CM, Pattyn GG, Lambrechts HA, Breillout F, Lardon F (2006) Cell cycle effects of vinflunine, the most recent promising Vinca alkaloid, and its interaction with radiation, in vitro. Cancer Chemother Pharmacol 58:210–218

    Article  PubMed  CAS  Google Scholar 

  33. Sinclair WK, Morton RA (1966) X-ray sensitivity during the cell generation cycle of cultured Chinese hamster cells. Radiat Res 29:450–474

    Article  PubMed  CAS  Google Scholar 

  34. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  35. Steel GG (2002) Cell survival as a determinant of tumour response. In: Steel GG (eds) Basic clinical radiobiology, 3rd edn. Hodder Arnold, London, pp 52–63

    Google Scholar 

  36. Steren A, Sevin BU, Perras J, Ramos R, Angioli R, Nguyen H, Koechli O, Averette HE (1993) Taxol as a radiation sensitizer: a flow cytometric study. Gynecol Oncol 50:89–93

    Article  PubMed  CAS  Google Scholar 

  37. Terasima R, Tolmach LJ (1963) X-ray sensitivity and DNA synthesis in synchronous populations of HeLa cells. Science 140:490–492

    Article  PubMed  CAS  Google Scholar 

  38. Tishler RB, Geard CR, Hall EJ, Schiff PB (1992) Taxol sensitizes human astrocytoma cells to radiation. Cancer Res 52:3495–3497

    PubMed  CAS  Google Scholar 

  39. Vindelov LL, Christensen IJ, Nissen NI (1983) A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327

    Article  PubMed  CAS  Google Scholar 

  40. Zhang M, Boyer M, Rivory L, Hong A, Clarke S, Stevens G, Fife K (2004) Radiosensitization of vinorelbine and gemcitabine in NCI-H460 non-small-cell lung cancer cells. Int J Radiat Oncol Biol Phys 58:353–360

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Christel De Pooter from the Radiotherapy department of the Sint-Augustinus Hospital Antwerp for giving us the opportunity to irradiate our cells. This study was financially supported by a grant from the Emmanuel van der Schueren Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Simoens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simoens, C., Pauwels, B., Vermorken, J.B. et al. Further mechanistic unravelling of the influence of the cell cycle effects on the radiosensitising mechanism of vinflunine, in vitro. Cancer Chemother Pharmacol 62, 183–193 (2008). https://doi.org/10.1007/s00280-007-0587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0587-4

Keywords

Navigation