Skip to main content

Advertisement

Log in

The range of optimal concentration and mechanisms of paclitaxel in radio-enhancement in gastrointestinal cancer cell lines

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Aim

This study was performed to investigate the range of optimal concentration and mechanisms of paclitaxel (PXL) radio-enhancement in gastrointestinal cancer cell lines HT29 and MKN45.

Methods

Cell growth inhibition by PXL pretreatment at various concentrations (0–10 μM) followed by irradiation was investigated using a modified MTT assay. To investigate the mechanisms of the observed radio-enhancement, flow cytometry was conducted to define the cell cycle distributions. Furthermore, the alterations in expression of a DNA repair molecule [excision repair cross-complementation group1 (ERCC1)] and an angiogenesis factor [vascular endothelial growth factor (VEGF)] induced by PXL were investigated.

Results

Cytotoxic concentrations of PXL (0.1–10 μM) that cause accumulation of cells in the G2/M phase have strong radio-enhancing effects and inhibit total cell growth. The maximal non-cytotoxic concentration of PXL (0.01 μM) also had a radio-enhancing effect. The expression of the genes of ERCC1 and VEGF induced by radiation was suppressed by PXL pretreatment. The protein secretion of VEGF induced by radiation was suppressed at cytotoxic doses of PXL, and the induced protein secretion of ERCC1 was also suppressed even at maximal non-cytotoxic doses of PXL.

Conclusion

The range of optimal concentration for PXL pretreatment was 0.01–0.1 μM in these cells. Two major mechanisms of radio-enhancement are suggested: (1) PXL induces G2/M arrest leading to increased DNA damage after radiation, which results in mitotic death, and (2) PXL suppresses the expression of radiation-induced DNA repair molecules and angiogenesis factors, resulting in inhibition of cell growth and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332:1004–1014

    Article  PubMed  CAS  Google Scholar 

  2. Horwitz SB (1992) Mechanism of action of taxol. Trends Pharmacol Sci 13:134–136

    Article  PubMed  CAS  Google Scholar 

  3. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565

    Article  PubMed  CAS  Google Scholar 

  4. Tishler RB, Schiff PB, Geard CR et al. (1992) Taxol: a novel radiation sensitizer. Int J Radiat Oncol Biol Phys 22:613–617

    PubMed  CAS  Google Scholar 

  5. Liebmann J, Cook JA, Fisher J et al. (1994) Changes in radiation survival curve parameters in human tumor and rodent cells exposed to paclitaxel (taxol). Int J Radiat Oncol Biol phys 29:559–564

    PubMed  CAS  Google Scholar 

  6. Gupta N, Hu LJ, Deen DF (1997) Cytotoxicity and cell-cycle effects of paclitaxel when used as a single agent in combination with ionizing radiation. Int J Radiat Oncol Biol Phys 37:885–895

    Article  PubMed  CAS  Google Scholar 

  7. Steren A, Sevin BU, Perras J et al. (1993) Taxol as a radiation sensitizer: a flow cytometric study. Gynecol Oncol 50:89–93

    Article  PubMed  CAS  Google Scholar 

  8. Rodriguez M, Sevin BU, Perras J et al. (1995) Paclitaxel: a radiation sensitizer of human cervical cancer cells. Gynecol Oncol 57:165–169

    Article  PubMed  CAS  Google Scholar 

  9. Milas L, Hunter NR, Mason KA et al. (1995) Tumor reoxygenation as a mechanism of taxol-induced enhancement of tumor radioresponse. Acta Oncol 34:409–412

    PubMed  CAS  Google Scholar 

  10. Milas L, Hunter NR, Mason KA et al. (1995) Role of reoxygenation in induction of enhancement of tumor radioresponse by paclitaxel. Cancer Res 55:3564–3568

    PubMed  CAS  Google Scholar 

  11. Schmidt-Ullrich RK, Dent P, Grant S et al. (2000) Signal transduction and cellular radiation responses. Radiat Res 153:245–257

    Article  PubMed  CAS  Google Scholar 

  12. Tounekti O, Kenani A, Foray N et al. (2001) The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway. Br J Cancer 84:1272–1279

    Article  PubMed  CAS  Google Scholar 

  13. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  14. Ferrara N (2001) Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 280:C1358–C1366

    PubMed  CAS  Google Scholar 

  15. Asano M, Yukita A, Matsumoto T et al. (1995) Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/ vascular permeability factor 121. Cancer Res 55:5296–5301

    PubMed  CAS  Google Scholar 

  16. Gorski DH, Beckett MA, Jaskowiak NT et al. (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59:3374–3378

    PubMed  CAS  Google Scholar 

  17. Katoh O, Tauchi H, Kawaishi K et al. (1995) Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 55:5687–5692

    PubMed  CAS  Google Scholar 

  18. Pidgeon G, Barr M, Harmey JH et al. (2001) Vascular endothelial growth factor (VEGF) upregulates Bcl-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells. Br J Cancer 85:273–278

    Article  PubMed  CAS  Google Scholar 

  19. Hovinga KE, Stalpers LJ, van Bree C et al. (2005) Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines-a clue to radioresistance? J Neurooncol 74: 99–103

    Article  PubMed  CAS  Google Scholar 

  20. Dabholkar M, Vionnet J, Bostick-Bruton F et al. (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Investig 94:703–708

    Article  PubMed  CAS  Google Scholar 

  21. Murray D, Rosenberg E (1996) The importance of the ERCC1/ERCC4 [XPF] complex for hypoxic-cell radioresistance does not appear to derive from its participation in the nucleotide excision repair pathway. Mutat Res 364:217–226

    PubMed  CAS  Google Scholar 

  22. Wood RD, Mitchell M, Sgouros J et al. (2001) Human DNA repair genes. Science 291:1284–1289

    Article  PubMed  CAS  Google Scholar 

  23. You JS, Wang M, Lee SH (2003) Biochemical analysis of damage recognition process in nucleotide excision repair. J Biol Chem 278:7476–7485

    Article  PubMed  CAS  Google Scholar 

  24. Houtsmuller AB, Rademakers S, Nigg AL et al. (1999) Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284:958–961

    Article  PubMed  CAS  Google Scholar 

  25. Metzger R, Leichman CG, Danenberg KD et al. (1998) ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16:309–316

    PubMed  CAS  Google Scholar 

  26. Shirota Y, Stoehlmacher J, Brabender J et al. (2001) ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 19:4298–4304

    PubMed  CAS  Google Scholar 

  27. Lord RV, Brabender J, Gandara D et al. (2002) Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 8:2286–2291

    PubMed  CAS  Google Scholar 

  28. Warnecke-Eberz U, Metzger R, Miyazono F et al. (2004) High specificity of quantitative excision repair cross-complementing 1 messenger RNA expression for prediction of minor histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Clin Cancer Res 10:3794–3799

    Article  PubMed  CAS  Google Scholar 

  29. Reed E (1998) Platinum–DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat Rev 24: 331–344

    Article  PubMed  CAS  Google Scholar 

  30. Melton DW, Ketchen AM, Nunez F et al. (1998) Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination. J Cell Sci 111: 395–404

    PubMed  CAS  Google Scholar 

  31. Murray D, Vallee-Lucic L, Rosenberg E et al. (2002) Sensitivity of nucleotide excision repair-deficient human cells to ionizing radiation and cyclophosphamide. Anticancer Res 22:21–26

    PubMed  CAS  Google Scholar 

  32. Britten RA, Liu D, Tessier A et al. (2000) ERCC1 expression as a molecular marker of cisplatin resistance in human cervical tumor cells. Int J Cancer 89:453–457

    Article  PubMed  CAS  Google Scholar 

  33. Yacoub A, McKinstry R, Hinman D et al. (2003) Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 159:439–452

    Article  PubMed  CAS  Google Scholar 

  34. Toiyama Y, Tanaka K, Konishi N et al. (2006) Administration sequence-dependent antitumor effects of paclitaxel and 5-fluorouracil in the human gastric cancer cell line MKN45. Cancer Chemother Pharmacol 57:368–375

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Kusunoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toiyama, Y., Inoue, Y., Hiro, J. et al. The range of optimal concentration and mechanisms of paclitaxel in radio-enhancement in gastrointestinal cancer cell lines. Cancer Chemother Pharmacol 59, 733–742 (2007). https://doi.org/10.1007/s00280-006-0327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0327-1

Keywords

Navigation