Skip to main content
Log in

Molecular characteristics of hereditary red blood cell membrane disorders in Thailand: a multi-center registry

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

A Correction to this article was published on 02 December 2023

This article has been updated

Abstract

Red blood cell (RBC) membrane disorders represent a significant category of hereditary hemolytic anemia; however, information from Southeast Asia is limited. We established a national registry aiming to characterize RBC membrane disorders and their molecular features in Thailand. A total of 100 patients (99 kindreds) diagnosed with RBC membrane disorders between 2011 and 2020 from seven university hospitals were enrolled. The most prevalent disorders observed were hereditary elliptocytosis (HE; n=33), hereditary pyropoikilocytosis (HPP; n=28), hereditary spherocytosis (HS; n=19), Southeast Asian ovalocytosis (SAO; n=10 of 9 kindreds), and two cases of homozygous SAO. The remaining cases were grouped as unclassified membrane disorder. Seventy-six patients (76%) were molecularly confirmed by PCR, direct DNA sequencing, or hi-throughput sequencing. The primary causative gene for HE and HPP was SPTB, accounting for 28 out of 29 studied alleles for HE and 56 of 56 studied alleles for HPP. In the case of HS, dominant sporadic mutations in the ANK1 gene (n=4) and SPTB gene (n=3) were identified as the underlying cause. Notably, the four most common variants causing HE and HPP were SPTB Providence (c.6055 T>C), SPTB Buffalo (c.6074 T>G), SPTB Chiang Mai (c.6224 A>G), and SPTB c.6171__82delins TGCCCAGCT. These recurrent SPTB mutations accounted for 79 out of 84 mutated SPTB alleles (94%). In summary, HE and hereditary HPP associated with recurrent SPTB mutations are the predominant types of RBC membrane disorders observed in Thailand. These findings have significant implications for the clinical management and future research of RBC membrane disorders in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Mohandas N (2018) Inherited hemolytic anemia: a possessive beginner's guide. Hematology Am Soc Hematol Educ Program 2018(1):377–381. https://doi.org/10.1182/asheducation-2018.1.377

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iolascon A, Andolfo I, Russo R (2019) Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol 187(1):13–24. https://doi.org/10.1111/bjh.16126

    Article  PubMed  Google Scholar 

  3. Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112(10):3939–3948. https://doi.org/10.1182/blood-2008-07-161166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. King MJ, Garcon L, Hoyer JD, Iolascon A, Picard V, Stewart G, Bianchi P, Lee SH, Zanella A, International Council for Standardization in H (2015) ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders. Int J Lab Hematol 37(3):304–325. https://doi.org/10.1111/ijlh.12335

    Article  PubMed  Google Scholar 

  5. Wu Y, Liao L, Lin F (2021) The diagnostic protocol for hereditary spherocytosis-2021 update. J Clin Lab Anal 35(12):e24034. https://doi.org/10.1002/jcla.24034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Niss O, Chonat S, Dagaonkar N, Almansoori MO, Kerr K, Rogers ZR, McGann PT, Quarmyne MO, Risinger M, Zhang K, Kalfa TA (2016) Genotype-phenotype correlations in hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood Cells Mol Dis 61:4–9. https://doi.org/10.1016/j.bcmd.2016.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silva R, Amarasinghe D, Perera S, Premawardhena A (2022) A Systematic review on diagnostic methods of red cell membrane disorders in Asia. Int J Lab Hematol 44(2):248–262. https://doi.org/10.1111/ijlh.13800

    Article  PubMed  Google Scholar 

  8. Da Costa L, Galimand J, Fenneteau O, Mohandas N (2013) Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 27(4):167–178. https://doi.org/10.1016/j.blre.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Perrotta S, Gallagher PG, Mohandas N (2008) Hereditary spherocytosis. Lancet 372(9647):1411–1426. https://doi.org/10.1016/s0140-6736(08)61588-3

    Article  CAS  PubMed  Google Scholar 

  10. An X, Mohandas N (2008) Disorders of red cell membrane. Br J Haematol 141(3):367–375. https://doi.org/10.1111/j.1365-2141.2008.07091.x

    Article  CAS  PubMed  Google Scholar 

  11. Wang C, Cui Y, Li Y, Liu X, Han J (2015) A systematic review of hereditary spherocytosis reported in Chinese biomedical journals from 1978 to 2013 and estimation of the prevalence of the disease using a disease model. Intractable Rare Dis Res 4(2):76–81. https://doi.org/10.5582/irdr.2015.01002

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jung HL (2013) A new paradigm in the diagnosis of hereditary hemolytic anemia. Blood Res 48(4):237–239. https://doi.org/10.5045/br.2013.48.4.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yawata Y, Kanzaki A, Yawata A, Nakanishi H, Kaku M (2001) Hereditary Red Cell Membrane Disorders in Japan: Their Genotypic and Phenotypic Features in 1014 Cases Studied. Hematology 6(6):399–422. https://doi.org/10.1080/10245332.2001.11746596

    Article  CAS  PubMed  Google Scholar 

  14. Shim YJ, Jung HL, Shin HY, Kang HJ, Choi JY, Hah JO, Lee JM, Lim YT, Yang EJ, Baek HJ, Choi HS, Yoo KH, Park JE, Kim S, Kim JY, Park ES, Im HJ, Chueh HW, Kim SK et al (2020) Epidemiological Study of Hereditary Hemolytic Anemia in the Korean Pediatric Population during 1997-2016: a Nationwide Retrospective Cohort Study. J Korean Med Sci 35(33):e279. https://doi.org/10.3346/jkms.2020.35.e279

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gallagher PG (2004) Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol 41(2):142–164

    Article  CAS  PubMed  Google Scholar 

  16. Dhermy D, Schrevel J, Lecomte MC (2007) Spectrin-based skeleton in red blood cells and malaria. Curr Opin Hematol 14(3):198–202. https://doi.org/10.1097/MOH.0b013e3280d21afd

    Article  CAS  PubMed  Google Scholar 

  17. Gallagher PG, Petruzzi MJ, Weed SA, Zhang Z, Marchesi SL, Mohandas N, Morrow JS, Forget BG (1997) Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest 99(2):267–277. https://doi.org/10.1172/JCI119155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gallagher PG, Weed SA, Tse WT, Benoit L, Morrow JS, Marchesi SL, Mohandas N, Forget BG (1995) Recurrent fatal hydrops fetalis associated with a nucleotide substitution in the erythrocyte beta-spectrin gene. J Clin Invest 95(3):1174–1182. https://doi.org/10.1172/JCI117766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ittiwut C, Natesirinilkul R, Tongprasert F, Sathitsamitphong L, Choed-amphai C, Fanhchaksai K, Charoenkwan P, Suphapeetiporn K, Shotelersuk V (2019) Novel mutations in SPTA1 and SPTB identified by whole exome sequencing in eight Thai families with hereditary pyropoikilocytosis presenting with severe fetal and neonatal anaemia. Br J Haematol 185(3):578–582

    Article  CAS  PubMed  Google Scholar 

  20. Songdej D, Kadegasem P, Tangbubpha N, Sasanakul W, Deelertthaweesap B, Chuansumrit A, Sirachainan N (2022) Whole-exome sequencing uncovered genetic diagnosis of severe inherited haemolytic anaemia: Correlation with clinical phenotypes. Br J Haematol 198(6):1051–1064. https://doi.org/10.1111/bjh.18356

    Article  CAS  PubMed  Google Scholar 

  21. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN, Consortium RE (2019) The REDCap consortium: Building an international community of software platform partners. J Biomed Inform 95:103208. https://doi.org/10.1016/j.jbi.2019.103208

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42(2):377–381. https://doi.org/10.1016/j.jbi.2008.08.010

    Article  PubMed  Google Scholar 

  23. Kim Y, Park J, Kim M (2017) Diagnostic approaches for inherited hemolytic anemia in the genetic era. Blood Res 52(2):84–94. https://doi.org/10.5045/br.2017.52.2.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ekwattanakit S, Korchuenjit J, Suksangpleng T, Riolueang S, Taechalertpaisarn T, Prommana P, Silapamongkolkul P, Charngkaew K, Roytrakul S, Uthaipibull C, Viprakasit V (2018) An Unexpectedly High Frequency of Sptb Gene Mutation (SPTB exon 29: c.6055T>C (p.Ser2019Pro; Spectrin Thai)) with a Single Origin in Thailand Suggesting a New Model of Red Blood Cell Trait Against Malarial Pressure. Blood 132:2322

    Article  Google Scholar 

  25. Lelliott PM, Huang HM, Dixon MW, Namvar A, Blanch AJ, Rajagopal V, Tilley L, Coban C, McMorran BJ, Foote SJ, Burgio G (2017) Erythrocyte β spectrin can be genetically targeted to protect mice from malaria. Blood Adv 1(26):2624–2636. https://doi.org/10.1182/bloodadvances.2017009274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R, Villamarin-Salomon R, Rubinstein W, Maglott DR (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44(D1):D862–D868. https://doi.org/10.1093/nar/gkv1222

    Article  CAS  PubMed  Google Scholar 

  27. Tole S, Dhir P, Pugi J, Drury LJ, Butchart S, Fantauzzi M, Langer JC, Baker JM, Blanchette VS, Kirby-Allen M, Carcao MD (2020) Genotype-phenotype correlation in children with hereditary spherocytosis. Br J Haematol 191(3):486–496. https://doi.org/10.1111/bjh.16750

    Article  CAS  PubMed  Google Scholar 

  28. Wang D, Song L, Shen L, Zhang K, Lv Y, Gao M, Ma J, Wan Y, Gai Z, Liu Y (2021) Mutational Characteristics of Causative Genes in Chinese Hereditary Spherocytosis Patients: a Report on Fourteen Cases and a Review of the Literature. Front Pharmacol 12:644352. https://doi.org/10.3389/fphar.2021.644352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang R, Yang S, Xu M, Huang J, Liu H, Gu W, Zhang X (2018) Exome sequencing confirms molecular diagnoses in 38 Chinese families with hereditary spherocytosis. Sci China Life Sci 61(8):947–953. https://doi.org/10.1007/s11427-017-9232-6

    Article  CAS  PubMed  Google Scholar 

  30. Park J, Jeong DC, Yoo J, Jang W, Chae H, Kim J, Kwon A, Choi H, Lee JW, Chung NG, Kim M, Kim Y (2016) Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin Genet 90(1):69–78. https://doi.org/10.1111/cge.12749

    Article  CAS  PubMed  Google Scholar 

  31. Yawata Y, Kanzaki A, Yawata A, Doerfler W, Ozcan R, Eber SW (2000) Characteristic features of the genotype and phenotype of hereditary spherocytosis in the Japanese population. Int J Hematol 71(2):118–135

  32. Mariani M, Barcellini W, Vercellati C, Marcello AP, Fermo E, Pedotti P, Boschetti C, Zanella A (2008) Clinical and hematologic features of 300 patients affected by hereditary spherocytosis grouped according to the type of the membrane protein defect. Haematologica 93(9):1310–1317. https://doi.org/10.3324/haematol.12546

    Article  CAS  PubMed  Google Scholar 

  33. Gallagher PG (2018) Red blod cell membrane disorders. In: Hoffman R, Benz EJ, Silberstein LE et al (eds) Hematology basic principles and practice, 7th edn. Elsevier, Philadelphia, pp 626–647

    Google Scholar 

  34. Lux SE (2015) Disorders of the red cell membrane. In: Orkin SH, Fisher DE, Ginsberg D, Look AT, Lux SE, Nathan DG (eds) Nathan and Oski's hematology and oncology of infancy and childhood, 8th edn. Elsevier Saunders, Philadelphia, pp 515–579

    Google Scholar 

  35. Laosombat V, Viprakasit V, Dissaneevate S, Leetanaporn R, Chotsampancharoen T, Wongchanchailert M, Kodchawan S, Thongnoppakun W, Duangchu S (2010) Natural history of Southeast Asian Ovalocytosis during the first 3 years of life. Blood Cells Mol Dis 45(1):29–32. https://doi.org/10.1016/j.bcmd.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  36. Laosombat V, Dissaneevate S, Wongchanchailert M, Satayasevanaa B (2005) Neonatal anemia associated with Southeast Asian ovalocytosis. Int J Hematol 82(3):201–205. https://doi.org/10.1532/IJH97.A20505

    Article  PubMed  Google Scholar 

  37. Yamsri S, Kawon W, Duereh A, Fucharoen G, Fucharoen S (2021) Southeast Asian Ovalocytosis and Hemoglobinopathies in Newborns: Prevalence, Molecular, and Hematologic Analyses. J Pediatr Hematol Oncol 43(3):e341–e345. https://doi.org/10.1097/MPH.0000000000001920

    Article  CAS  PubMed  Google Scholar 

  38. Jarolim P, Palek J, Amato D, Hassan K, Sapak P, Nurse GT, Rubin HL, Zhai S, Sahr KE, Liu SC (1991) Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci USA 88(24):11022–11026

  39. Tanphaichitr VS, Sumboonnanonda A, Ideguchi H, Shayakul C, Brugnara C, Takao M, Veerakul G, Alper SL (1998) Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J Clin Invest 102(12):2173–2179. https://doi.org/10.1172/JCI4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vasuvattakul S, Yenchitsomanus PT, Vachuanichsanong P, Thuwajit P, Kaitwatcharachai C, Laosombat V, Malasit P, Wilairat P, Nimmannit S (1999) Autosomal recessive distal renal tubular acidosis associated with Southeast Asian ovalocytosis. Kidney Int 56(5):1674–1682. https://doi.org/10.1046/j.1523-1755.1999.00756.x

    Article  CAS  PubMed  Google Scholar 

  41. Picard V, Proust A, Eveillard M, Flatt JF, Couec ML, Caillaux G, Feneant-Thibault M, Finkelstein A, Raphael M, Delaunay J, Bruce LJ, Pissard S, Thomas C (2014) Homozygous Southeast Asian ovalocytosis is a severe dyserythropoietic anemia associated with distal renal tubular acidosis. Blood 123(12):1963–1965. https://doi.org/10.1182/blood-2014-01-548149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thai Society of Hematology (TSH). Its contents are the authors’ sole responsibility and do not necessarily represent official TSH views.

Funding

This work was supported by the Thai Society of Hematology (TSH). Its contents are the authors’ sole responsibility and do not necessarily represent official TSH views.

Author information

Authors and Affiliations

Authors

Contributions

D.S., P.S.U. and P.C. designed the study, designed the data collection form, and performed the statistical analysis, and wrote the first draft of the manuscript. All authors contributed to research design, interpretation of data, and gave critical comments. D.S., P.S.U., P.K., P.S.R., S.L., N.T., T.R., A.T., P.S.I., N.S. and P.C. collected clinical data. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Pimlak Charoenkwan.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The requirement for informed consent from participants included in the study was waived because the study was a retrospective review, and patient information was deidentified.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: This article was originally published with the participating institutes was erroneously omitted. There was a typographical error in the years of data collection in the Abstract section (original 2010-2021, correction 2011-2020)

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Songdej, D., Surapolchai, P., Komwilaisak, P. et al. Molecular characteristics of hereditary red blood cell membrane disorders in Thailand: a multi-center registry. Ann Hematol 103, 385–393 (2024). https://doi.org/10.1007/s00277-023-05555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05555-1

Keywords

Navigation