Skip to main content

Advertisement

Log in

Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Bcl-2-associated athanogene 3 (BAG3), a member of BAG family, is shown to sustain cell survival and underlie resistance to chemotherapy in human neoplastic cells. We aimed to determine the exact role and underlying mechanisms of BAG3 in human chronic lymphocytic leukemia (CLL). One hundred human CLL samples and 20 normal B-cell samples from healthy controls were collected. We measured the BAG3 expression in these cells and explored its relationship with known prognostic factors for CLL. The roles of BAG3 in cell apoptosis and migration were evaluated by small interfering RNA-mediated knockdown of BAG3 in primary CLL cells. We showed that BAG3 expression level was increased in CLL cells compared with normal B cells. Moreover, BAG3 expression was particularly upregulated in CD38 positive, unmutated immunoglobulin heavy-chain patients and those with lymphadenopathy and/or splenomegaly. Importantly, patients with increased BAG3 expression level have poor overall survival in subgroups with positive ZAP-70 or those without any “p53 abnormality”. In addition, knocking down of BAG3 expression resulted in increased apoptotic ratio and decreased migration in primary CLL cells. Our data indicate that BAG3 is a marker of poor prognostic in specific subgroups of CLL patients and may be a potential therapeutic target for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352:804–815

    Article  CAS  PubMed  Google Scholar 

  2. Berkova A, Pavlistova L, Babicka L et al (2008) Combined molecular biological and molecular cytogenetic analysis of genomic changes in 146 patients with B-cell chronic lymphocytic leukemia. Neoplasma 55:400–408

    CAS  PubMed  Google Scholar 

  3. Cramer P, Hallek M (2011) Prognostic factors in chronic lymphocytic leukemia—what do we need to know? Nat Rev Clin Oncol 8:38–47

    Article  CAS  PubMed  Google Scholar 

  4. Capitani N, Baldari CT (2010) The Bcl-2 family as a rational target for the treatment of B-cell chronic lymphocytic leukaemia. Curr Med Chem 17:801–811

    Article  CAS  PubMed  Google Scholar 

  5. Takayama S, Sato T, Krajewski S et al (1995) Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284

    Article  CAS  PubMed  Google Scholar 

  6. Doong H, Vrailas A, Kohn EC (2002) What’s in the 'BAG'?—a functional domain analysis of the BAG-family proteins. Cancer Lett 188:25–32

    Article  CAS  PubMed  Google Scholar 

  7. Takayama S, Reed JC (2001) Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3:E237–E241

    Article  CAS  PubMed  Google Scholar 

  8. Kassis JN, Guancial EA, Doong H, Virador V, Kohn EC (2006) CAIR-1/BAG-3 modulates cell adhesion and migration by downregulating activity of focal adhesion proteins. Exp Cell Res 312:2962–2971

    Article  CAS  PubMed  Google Scholar 

  9. Takayama S, Xie Z, Reed JC (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786

    Article  CAS  PubMed  Google Scholar 

  10. Bonelli P, Petrella A, Rosati A et al (2004) BAG3 protein regulates stress-induced apoptosis in normal and neoplastic leukocytes. Leukemia 18:358–360

    Article  CAS  PubMed  Google Scholar 

  11. Chiappetta G, Ammirante M, Basile A et al (2007) The antiapoptotic protein BAG3 is expressed in thyroid carcinomas and modulates apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand. J Clin Endocrinol Metab 92:1159–1163

    Article  CAS  PubMed  Google Scholar 

  12. Liao Q, Ozawa F, Friess H et al (2001) The anti-apoptotic protein BAG-3 is overexpressed in pancreatic cancer and induced by heat stress in pancreatic cancer cell lines. FEBS Lett 503:151–157

    Article  CAS  PubMed  Google Scholar 

  13. Staibano S, Mascolo M, Di Benedetto M et al (2010) BAG3 protein delocalisation in prostate carcinoma. Tumour Biol 31:461–469

    Article  CAS  PubMed  Google Scholar 

  14. Iwasaki M, Homma S, Hishiya A et al (2007) BAG3 regulates motility and adhesion of epithelial cancer cells. Cancer Res 67:10252–10259

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki M, Iwasaki M, Sugio A et al (2011) BAG3 (BCL2-associated athanogene 3) interacts with MMP-2 to positively regulate invasion by ovarian carcinoma cells. Cancer Lett 303:65–71

    Article  CAS  PubMed  Google Scholar 

  16. Romano MF, Festa M, Pagliuca G et al (2003) BAG3 protein controls B-chronic lymphocytic leukaemia cell apoptosis. Cell Death Differ 10:383–385

    Article  CAS  PubMed  Google Scholar 

  17. Romano MF, Festa M, Petrella A et al (2003) BAG3 protein regulates cell survival in childhood acute lymphoblastic leukemia cells. Cancer Biol Ther 2:508–510

    Article  CAS  PubMed  Google Scholar 

  18. Liu P, Xu B, Li J, Lu H (2009) BAG3 gene silencing sensitizes leukemic cells to Bortezomib-induced apoptosis. FEBS Lett 583:401–406

    Article  CAS  PubMed  Google Scholar 

  19. Wang HQ, Liu HM, Zhang HY, Guan Y, Du ZX (2008) Transcriptional upregulation of BAG3 upon proteasome inhibition. Biochem Biophys Res Commun 365:381–385

    Article  CAS  PubMed  Google Scholar 

  20. Valdez BC, Murray D, Ramdas L et al (2008) Altered gene expression in busulfan-resistant human myeloid leukemia. Leuk Res 32:1684–1697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chen HY, Liu P, Sun M et al (2010) Bag3 gene expression in chronic lymphocytic leukemia and its association with patients’ prognosis. Zhongguo Shi Yan Xue Ye Xue Za Zhi 18:838–842

    CAS  PubMed  Google Scholar 

  22. Zhu H, Liu P, Li J (2012) BAG3: a new therapeutic target of human cancers? Histol Histopathol 27:257–261

    CAS  PubMed  Google Scholar 

  23. Anonymous (2004) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Int Bioethique 15:124–129

    Google Scholar 

  24. Hallek M, Cheson BD, Catovsky D et al (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111:5446–5456

    Article  CAS  PubMed  Google Scholar 

  25. Keating MJ, O’Brien S, Kontoyiannis D et al (2002) Results of first salvage therapy for patients refractory to a fludarabine regimen in chronic lymphocytic leukemia. Leuk Lymphoma 43:1755–1762

    Article  CAS  PubMed  Google Scholar 

  26. Xu W, Li JY, Wu YJ et al (2008) Prognostic significance of ATM and TP53 deletions in Chinese patients with chronic lymphocytic leukemia. Leuk Res 32:1071–1077

    Article  CAS  PubMed  Google Scholar 

  27. Dong HJ, Zhou LT, Zhu DX et al (2011) The prognostic significance of TP53 mutations in Chinese patients with chronic lymphocytic leukemia is independent of del(17p13). Ann Hematol 90:709–717

    Article  CAS  PubMed  Google Scholar 

  28. Buggins AG, Pepper CJ (2010) The role of Bcl-2 family proteins in chronic lymphocytic leukaemia. Leuk Res 34:837–842

    Article  CAS  PubMed  Google Scholar 

  29. Seo YJ, Jeon MH, Lee JH et al (2005) Bis induces growth inhibition and differentiation of HL-60 cells via up-regulation of p27. Exp Mol Med 37:624–630

    Article  CAS  PubMed  Google Scholar 

  30. Rosati A, Di Salle E, Luberto L et al (2009) Identification of a Btk-BAG3 complex induced by oxidative stress. Leukemia 23:823–824

    Article  CAS  PubMed  Google Scholar 

  31. Cesaro E, Montano G, Rosati A et al (2010) WT1 protein is a transcriptional activator of the antiapoptotic bag3 gene. Leukemia 24:1204–1206

    Article  CAS  PubMed  Google Scholar 

  32. Krober A, Seiler T, Benner A et al (2002) V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 100:1410–1416

    CAS  PubMed  Google Scholar 

  33. Jelinek DF, Tschumper RC, Geyer SM et al (2001) Analysis of clonal B-cell CD38 and immunoglobulin variable region sequence status in relation to clinical outcome for B-chronic lymphocytic leukaemia. Br J Haematol 115:854–861

    Article  CAS  PubMed  Google Scholar 

  34. Hayat A, O’Brien D, O’Rourke P et al (2006) CD38 expression level and pattern of expression remains a reliable and robust marker of progressive disease in chronic lymphocytic leukemia. Leuk Lymphoma 47:2371–2379

    Article  CAS  PubMed  Google Scholar 

  35. Rosenwald A, Alizadeh AA, Widhopf G et al (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194:1639–1647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wiestner A, Rosenwald A, Barry TS et al (2003) ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101:4944–4951

    Article  CAS  PubMed  Google Scholar 

  37. Dohner H, Fischer K, Bentz M et al (1995) p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85:1580–1589

    CAS  PubMed  Google Scholar 

  38. Lin K, Sherrington PD, Dennis M et al (2002) Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia. Blood 100:1404–1409

    Article  CAS  PubMed  Google Scholar 

  39. Lee JH, Takahashi T, Yasuhara N et al (1999) Bis, a Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. Oncogene 18:6183–6190

    Article  CAS  PubMed  Google Scholar 

  40. Jacobs AT, Marnett LJ (2009) HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J Biol Chem 284:9176–9183

    Article  CAS  PubMed  Google Scholar 

  41. Ammirante M, Rosati A, Arra C et al (2010) IKKγ protein is a target of BAG3 regulatory activity in human tumor growth. Proc Natl Acad Sci USA 107:7497–7502

    Article  CAS  PubMed  Google Scholar 

  42. Du ZX, Meng X, Zhang HY, Guan Y, Wang HQ (2008) Caspase-dependent cleavage of BAG3 in proteasome inhibitors-induced apoptosis in thyroid cancer cells. Biochem Biophys Res Commun 369:894–898

    Article  CAS  PubMed  Google Scholar 

  43. Wang HQ, Liu BQ, Gao YY et al (2009) Inhibition of the JNK signalling pathway enhances proteasome inhibitor-induced apoptosis of kidney cancer cells by suppression of BAG3 expression. Br J Pharmacol 158:1405–1412

    Article  CAS  PubMed  Google Scholar 

  44. Aveic S, Pigazzi M, Basso G (2011) BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia. PLoS One 6:e26097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Iwasaki M, Tanaka R, Hishiya A et al (2010) BAG3 directly associates with guanine nucleotide exchange factor of Rap1, PDZGEF2, and regulates cell adhesion. Biochem Biophys Res Commun 400:413–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (81170486, 81170485, 30871104, 30971296, 81000216, 81170488, 81100352), Jiangsu Province’s Medical Elite Program (RC2011168), the International Cooperation Program of Jiangsu Province (BZ2010041), Key Project of Jiangsu Province Health Agency (K201107, K201108), Natural Science Fund for Distinguished Young Scholars of Jiangsu Province (2013-32 to Prof. Peng Liu), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institute (JX10231801), National Public Health Grand Research Foundation (201202017), the Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, Jiangsu Province Higher Education Institute Foundation of Science and Technology Innovation Team Program and the Project for State Key Clinical Department construction.

Disclosure statement

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Liu or Jianyong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Wu, W., Fu, Y. et al. Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia. Ann Hematol 93, 425–435 (2014). https://doi.org/10.1007/s00277-013-1883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-013-1883-1

Keywords

Navigation