Skip to main content

Advertisement

Log in

Baculovirus-transduced mouse amniotic fluid-derived stem cells maintain differentiation potential

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Amniotic fluid-derived stem cells have attracted considerable attention in the field of regenerative medicine. Approach of genetic modification probably enhances their regenerative potential. In this work, we wanted to determine whether baculovirus as a new gene vector could efficiently and safely transduce mouse amniotic fluid-derived stem cells (mAFSs). Cells were isolated from mouse amniotic fluid and cultured in vitro. These cells were analyzed by examining phenotypes and differentiation potential. They were further transduced with baculovirus. Baculovirus-transduced mAFSs were induced to differentiate into adipogenic, osteogenic, myogenic, and neurogenic lineages. Mouse amniotic fluid-derived stem cells were successfully isolated and cultured in vitro. They were positive for CD29 and Sca-1, but negative for CD34, CD45, or CD11b. Furthermore, they could differentiate into adipocytes, osteocytes, myocytes, and neurocytes in vitro. Baculovirus could efficiently transduced mAFSs. More importantly, baculovirus-transduced mAFSs retained differentiation potential. Thus, baculovirus vector effective and safe transduction is an attractive promise for genetic modification of mAFSs. Baculovirus genetically modified mAFSs will probably be more suitable as vehicles for regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. In’t Anker PS, Scherjon SA, Kleijbrug-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549. doi:10.1182/blood-2003-04-1291

    Article  Google Scholar 

  2. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M (2003) Oct-4 expressing cells in human amniotic fluid: a new source for stem cell research. Hum Reprod 18:1489–1493. doi:10.1093/humrep/deg279

    Article  PubMed  Google Scholar 

  3. Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456. doi:10.1093/humrep/deh279

    Article  PubMed  Google Scholar 

  4. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106. doi:10.1038/nbt1274

    Article  PubMed  Google Scholar 

  5. Liu Y, Song J, Liu W, Wan Y, Chen X, Hu C (2003) Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomyogenic differentiation? Cardiovasc Res 58:460–468. doi:10.1016/S0008-6363(03)00265-7

    Article  PubMed  CAS  Google Scholar 

  6. Ferrari G, Stornaiuolo A, Mavilio F (2001) Bone-marrow transplantation: failure to correct murine muscular dystrophy. Nature 411:1014–1015. doi:10.1038/35082631

    Article  PubMed  CAS  Google Scholar 

  7. Yu Y, Yao AH, Chen N, Pu LY, Fan Y, Lv L, Sun BC, Li GQ, Wang XH (2007) Mesechymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration. Mol Ther 15:1382–1389. doi:10.1038/sj.mt.6300202

    Article  PubMed  CAS  Google Scholar 

  8. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749. doi:10.1634/stemcells.2007-0197

    Article  PubMed  CAS  Google Scholar 

  9. Rodino-Klapac LR, Chicoine LG, Kaspar BK, Mendell JR (2007) Gene therapy for duchenne muscular dystrophy: expectations and challenges. Arch Neurol 64:1236–1241. doi:10.1001/archneur.64.9.1236

    Article  PubMed  Google Scholar 

  10. Hu YC (2008) Baculoviral vectors for gene delivery: a review. Curr Gene Ther 8:54–65. doi:10.2174/156652308783688509

    Article  PubMed  CAS  Google Scholar 

  11. Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002) Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20:249–258. doi:10.1634/stemcells.20-3-249

    Article  PubMed  Google Scholar 

  12. Wakitani S, Saito T, Caplan A (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426. doi:10.1002/mus.880181212

    Article  PubMed  CAS  Google Scholar 

  13. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370. doi:10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  14. Hsu CS, Ho YC, Wang KC, Hu YC (2004) Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng 88:42–51. doi:10.1002/bit.20213

    Article  PubMed  CAS  Google Scholar 

  15. Tsai MS, Hwang SM, Tsai YL, Cheng FC, Lee JL, Chang YJ (2006) Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 74:545–551. doi:10.1095/biolreprod.105.046029

    Article  PubMed  CAS  Google Scholar 

  16. Kim J, Lee Y, Kim H, Hwang KJ, Kwon HC, Kim SK, Cho DJ, Kang SG, You J (2007) Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 40:75–90. doi:10.1111/j.1365-2184.2007.00414.x

    Article  PubMed  CAS  Google Scholar 

  17. Woodbury D, Kramer BC, Reynolds K, Marcus AJ, Coyne TM, Black IB (2006) Long-term cryopreserved amniocytes retain proliferative capacity and differentiate to ectodermal and mesodermal derivatives in vitro. Mol Reprod Dev 73:1463–1472. doi:10.1002/mrd.20587

    Article  PubMed  CAS  Google Scholar 

  18. Nadri S, Soleimani M (2007) Comparative analysis of mesenchymal stromal cells from murine bone marrow and amniotic fluid. Cytotherapy 9:729–737. doi:10.1080/14653240701656061

    Article  PubMed  CAS  Google Scholar 

  19. Grisafi D, Piccoli M, Pozzobon M, Ditadi A, Zaramella P, Chiandetti L, Zanon GF, Atala A, Zacchello F, Scarpa M, De Coppi P, Tomanin R (2008) High transduction efficiency of human amniotic fluid stem cells mediated by adenovirus vectors. Stem Cells Dev 17:953–962. doi:10.1089/scd.2007.0188

    Article  PubMed  CAS  Google Scholar 

  20. Ho YC, Chung YC, Hwang SM, Wang KC, Hu YC (2005) Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J Gene Med 7:860–868. doi:10.1002/jgm.729

    Article  PubMed  CAS  Google Scholar 

  21. Zeng J, Du J, Zhao Y, Palanisamy N, Wang S (2007) Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells. Stem Cells 25:1055–1061. doi:10.1634/stemcells.2006-0616

    Article  PubMed  CAS  Google Scholar 

  22. Conget PA, Minguell JJ (2000) Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp Hematol 28:382–390. doi:10.1016/S0301-472X(00)00134-X

    Article  PubMed  CAS  Google Scholar 

  23. Stender S, Murphy M, O’Brien T, Stengaard C, Ulrich-Vinther M, Soballe K, Barry F (2007) Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater 13:93–99

    PubMed  CAS  Google Scholar 

  24. Zeng Q, Li X, Beck G, Balian G, Shen FH (2007) Growth and differentiation factor-5 (GDF-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (VEGF) levels in fat-derived stromal cells in vitro. Bone 40:374–381. doi:10.1016/j.bone.2006.09.022

    Article  PubMed  CAS  Google Scholar 

  25. Chen TH, Chen WM, Hsu KH, Kuo CD, Hung SC (2007) Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 355:913–918. doi:10.1016/j.bbrc.2007.02.057

    Article  PubMed  CAS  Google Scholar 

  26. Pal R, Khanna A (2007) Similar pattern in cardiac differentiation of human embryonic stem cell lines, BG01V and ReliCellhES1, under low serum concentration supplemented with bone morphogenetic protein-2. Differentiation 75:112–122. doi:10.1111/j.1432-0436.2006.00123.x

    Article  PubMed  CAS  Google Scholar 

  27. Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H (2007) Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 25:649–658. doi:10.1111/j.1460-9568.2007.05309.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (30370510 and 30170337) and CMB Fund (4209347).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Lin Lu or Cheng Zhang.

Additional information

Liu and Xu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, ZS., Xu, YF., Feng, SW. et al. Baculovirus-transduced mouse amniotic fluid-derived stem cells maintain differentiation potential. Ann Hematol 88, 565–572 (2009). https://doi.org/10.1007/s00277-008-0634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-008-0634-1

Keywords

Navigation