Skip to main content

Advertisement

Log in

The subtalar and talonavicular joints: a way to access the long-term load intake using conventional CT-data

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the distribution of density of the subchondral bone plate within the articular surfaces of the subtalar and talonavicular joint regarding to its mineralisation and to verify whether a correlation to the mechanical bone strength exists.

Methods

A total of 21 cadaverous lower leg specimens were investigated. Computed tomography osteo-absorptiometry (CT-OAM) was used to display the mineralisation of the subchondral bone plate analysing its density. The mechanical strength was measured by means of indentation testing. The distribution pattern was analysed regarding their dissemination with the main focus on number and location of their maxima. The correlation of both parameters was evaluated by linear regression.

Results

The mineralisation and the mechanical strength were not distributed homogenously throughout the articular surfaces but showed unique and reproducible patterns. The range of absolute values for density and strength varied in between the samples and joint surfaces, but the number and location of the maxima evaluated by both methods showed to be concurring. The coefficient of correlation of both datasets ranged from 0.76 to 0.95 (median 0.88) and showed a linear dependency.

Conclusions

Density distribution and mechanical strength of the subchondral bone plate are significantly associated and can be seen as a mirror of the long-term load intake of a joint. It can be concluded that CT-OAM as a tool to visualize subchondral bone plate density distribution regarding to its mineralisation can be used to indirectly gain information about joint biomechanics in vivo by the use of conventional CT-data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aitken GK, Bourne RB, Finlay JB, Rorabeck CH, Andreae PR (1985) Indentation stiffness of the cancellous bone in the distal human tibia. Clin Orthop Relat Res 201:264–270

    PubMed  Google Scholar 

  2. Akiyama K, Sakai T, Sugimoto N, Yoshikawa H, Sugamoto K (2012) Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density. Osteoarthritis Cartilage 20(4):296–304. doi:10.1016/j.joca.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  3. Aly T (2011) Management of valgus extra-articular calcaneus fracture malunions with a lateral opening wedge osteotomy. J Foot Ankle Surg 50(6):703–706. doi:10.1053/j.jfas.2011.04.006

    Article  PubMed  Google Scholar 

  4. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18. doi:10.1007/s00198-002-1345-4

    PubMed  Google Scholar 

  5. Barbaix E, Van Roy P, Clarys JP (2000) Variations of anatomical elements contributing to subtalar joint stability: intrinsic risk factors for post-traumatic lateral instability of the ankle? Ergonomics 43(10):1718–1725. doi:10.1080/001401300750004122

    Article  CAS  PubMed  Google Scholar 

  6. Beaudoin AJ, Fiore SM, Krause WR, Adelaar RS (1991) Effect of isolated talocalcaneal fusion on contact in the ankle and talonavicular joints. Foot Ankle 12(1):19–25

    Article  CAS  PubMed  Google Scholar 

  7. Bunning PS, Barnett CH (1965) A comparison of adult and foetal talocalcaneal articulations. J Anat 99:71–76

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Burkhart KJ, Nowak TE, Blum J, Kuhn S, Welker M, Sternstein W, Mueller LP, Rommens PM (2010) Influence of formalin fixation on the biomechanical properties of human diaphyseal bone. Biomed Tech (Berl) 55(6):361–365. doi:10.1515/BMT.2010.043

    Article  Google Scholar 

  9. Chen YX, Yu GR, Mei J, Zhou JQ, Wang W (2008) Assessment of subtalar joint neutral position: a cadaveric study. Chin Med J (Engl) 121(8):735–739

    Google Scholar 

  10. Hoechel S, Wirz D, Muller-Gerbl M (2012) Density and strength distribution in the human subchondral bone plate of the patella. Int Orthop 36(9):1827–1834. doi:10.1007/s00264-012-1545-2

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hofmann AA, Hammon DJ, Daniels AU (1991) Compressive strength mapping of femoral head trabecular bone. J Rehabil Res Dev 28(2):25–32

    Article  CAS  PubMed  Google Scholar 

  12. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433. doi:10.1007/s00167-010-1054-z

    Article  PubMed  Google Scholar 

  13. Mahjoub M, Berenbaum F, Houard X (2012) Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis. Osteoporos Int 23(Suppl 8):841–846. doi:10.1007/s00198-012-2161-0

    Article  Google Scholar 

  14. Mall G, Koebke J (1993) Stress fractures of the navicular bone—biomechanical and densitometry studies. Sportverletz Sportschaden 7(2):73–77. doi:10.1055/s-2007-993486

    Article  CAS  PubMed  Google Scholar 

  15. Milz S, Eckstein F, Putz R (1997) Thickness distribution of the subchondral mineralization zone of the trochlear notch and its correlation with the cartilage thickness: an expression of functional adaptation to mechanical stress acting on the humeroulnar joint? Anat Rec 248(2):189–197

    Article  CAS  PubMed  Google Scholar 

  16. Muhlhofer H, Ercan Y, Drews S, Matsuura M, Meissner J, Linsenmaier U, Putz R, Muller-Gerbl M (2009) Mineralisation and mechanical strength of the subchondral bone plate of the inferior tibial facies. Surg Radiol Anat 31(4):237–243. doi:10.1007/s00276-008-0430-6

    Article  CAS  PubMed  Google Scholar 

  17. Mulcahy DM, McCormack DM, Stephens MM (1998) Intra-articular calcaneal fractures: effect of open reduction and internal fixation on the contact characteristics of the subtalar joint. Foot Ankle Int 19(12):842–848

    Article  CAS  PubMed  Google Scholar 

  18. Muller-Gerbl M (1998) The subchondral bone plate. Adv Anat Embryol Cell Biol 141:III–XI, 1–134

    Google Scholar 

  19. Perry J (1983) Anatomy and biomechanics of the hindfoot. Clin Orthop Relat Res 177:9–15

    PubMed  Google Scholar 

  20. Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40

    PubMed  Google Scholar 

  21. Reeck J, Felten N, McCormack AP, Kiser P, Tencer AF, Sangeorzan BJ (1998) Support of the talus: a biomechanical investigation of the contributions of the talonavicular and talocalcaneal joints, and the superomedial calcaneonavicular ligament. Foot Ankle Int 19(10):674–682

    Article  CAS  PubMed  Google Scholar 

  22. Saitoh S, Nakatsuchi Y, Latta L, Milne E (1994) Distribution of bone mineral density and bone strength of the proximal humerus. J Shoulder Elbow Surg 3(4):234–242. doi:10.1016/S1058-2746(09)80041-4

    Article  CAS  PubMed  Google Scholar 

  23. Sangeorzan BJ, Wagner UA, Harrington RM, Tencer AF (1992) Contact characteristics of the subtalar joint: the effect of talar neck misalignment. J Orthop Res 10(4):544–551. doi:10.1002/jor.1100100409

    Article  CAS  PubMed  Google Scholar 

  24. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261. doi:10.1056/NEJMra053077

    Article  CAS  PubMed  Google Scholar 

  25. Shahabpour M, Deville A, Van Roy P, Vaes P, De Mey J, De Maeseneer M (2011) Magnetic resonance imaging of anatomical variants of the subtalar joint. Surg Radiol Anat 33(7):623–630. doi:10.1007/s00276-011-0788-8

    Article  CAS  PubMed  Google Scholar 

  26. Sharada R, Sneha K, Gupta C, Pai SR, Rairam GB (2012) Non-metrical study of the pattern of talar articular facets in south Indian dry calcanei. Surg Radiol Anat 34(6):487–491. doi:10.1007/s00276-012-0939-6

    Article  CAS  PubMed  Google Scholar 

  27. Smith CB, Smith DA (1976) Relations between age, mineral density and mechanical properties of human femoral compacta. Acta Orthop Scand 47(5):496–502

    Article  CAS  PubMed  Google Scholar 

  28. Unger S, Blauth M, Schmoelz W (2010) Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone 47(6):1048–1053. doi:10.1016/j.bone.2010.08.012

    Article  PubMed  Google Scholar 

  29. van Haaren EH, van der Zwaard BC, van der Veen AJ, Heyligers IC, Wuisman PI, Smit TH (2008) Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthop 79(5):708–716. doi:10.1080/17453670810016759

    Article  PubMed  Google Scholar 

  30. Wagner UA, Sangeorzan BJ, Harrington RM, Tencer AF (1992) Contact characteristics of the subtalar joint: load distribution between the anterior and posterior facets. J Orthop Res 10(4):535–543. doi:10.1002/jor.1100100408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs. Mireille Toranelli for the software-support and Mrs. Nicole Hauser for her help with management of CT-data. Furthermore, the authors received no grant or sources of financial support related to the topic or topics of this article.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Hoechel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, F., Hoechel, S., Klaws, J. et al. The subtalar and talonavicular joints: a way to access the long-term load intake using conventional CT-data. Surg Radiol Anat 36, 463–472 (2014). https://doi.org/10.1007/s00276-013-1205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-013-1205-2

Keywords

Navigation