Skip to main content

Advertisement

Log in

Potentialities and limitations of a database constructing three-dimensional virtual bone models

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Background

3D bone reconstructions performed during general clinical practice are of limited use for preclinical research, education, and training purposes. For this reason, we are constructing a database of human 3D virtual bone models compiled from computer tomography (CT) scans.

Materials and methods

CT data sets were post-processed using Amira® 5.2 software. In each cut, bone structures were isolated using semiautomatic labeling program codes. The software then generated extremely precise 3D bone models in STL format (standard triangulated language). These bone models offer a sustainable source of information for morphologic studies and investigations of biomechanical bony characteristics in complex anatomic regions. Regarding educational value and student acceptance models were introduced during bedside teaching and evaluated by medical students.

Results

The current database is comprised of 131 pelvises and 120 femurs (ø 60 years, ø 172 cm, ø 76 kg), and is continuously growing. To date, 3D morphometric analyses of the posterior ring and the acetabulum have been successfully completed. Eighty students (96 %) evaluated instruction with virtual 3D bone models as “good” or “very good“. The majority of students want to increase learning with virtual bone models covering various regions and diseases.

Conclusion

With consistent and steadily increasing case numbers, the database offers a sustainable alternative to human cadaver work for practical investigations. In addition, it offers a platform for education and training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blake T (1977) Motion in instructional media: some subject-display mode interactions. Percept Mot Skills 44:975–985

    Article  Google Scholar 

  2. Jerosch J, Wetzel R, Aldinger G, Weipert A, Hanusek S, Filler TJ, Peuker ET (2000) Virtual simulation for optimizing the range of motion in hip alloarthroplasty using an adapted thrust-plate prosthesis model. Der Orthopade 29(7):605–613

    PubMed  CAS  Google Scholar 

  3. Kamer L, Noser H, Schramm A, Hammer B (2010) Orbital form analysis: problems with design and positioning of precontoured orbital implants: a serial study using post-processed clinical CT data in unaffected orbits. Int J Oral Maxillofac Surg 39(7):666–672. doi:10.1016/j.ijom.2010.03.005

    Article  PubMed  CAS  Google Scholar 

  4. Kamer L, Noser H, Schramm A, Hammer B, Kirsch E (2010) Anatomy-based surgical concepts for individualized orbital decompression surgery in graves orbitopathy. I. Orbital size and geometry. Ophthalmic Plast Reconstr Surg 26(5):348–352. doi:10.1097/IOP.0b013e3181c9bb52

    Article  Google Scholar 

  5. Kwan MK, Jeffry A, Chan CY, Saw LB (2012) A radiological evaluation of the morphometry and safety of S1, S2 and S2-ilium screws in the Asian population using three dimensional computed tomography scan: an analysis of 180 pelvis. Surg Radiol Anat SRA 34(3):217–227. doi:10.1007/s00276-011-0919-2

    Article  Google Scholar 

  6. Lewalter D (1997) Lernen mit Bildern und Animationen. Studie zum Einfluß von Lernmerkmalen auf die Effektivität von Illustrationen, vol 1. Waxmann, Münster

  7. Mendel T, Noser H, Wohlrab D, Stock K, Radetzki F (2011) The lateral sacral triangle–a decision support for secure transverse sacroiliac screw insertion. Injury 42(10):1164–1170

    Article  PubMed  CAS  Google Scholar 

  8. Mittelmeier W, Peters P, Ascherl R, Gradinger R (1997) Rapid prototyping. Construction of a model in the preoperative planning of reconstructive pelvic interventions. Der Orthopade 26(3):273–279

    PubMed  CAS  Google Scholar 

  9. Noser H, Heldstab T, Schmutz B, Kamer L (2011) Typical accuracy and quality control of a process for creating CT-based virtual bone models. J Digit Imaging 24(3):437–445. doi:10.1007/s10278-010-9287-4

    Article  PubMed  Google Scholar 

  10. Noser H, Radetzki F, Stock K, Mendel T (2011) A method for computing general sacroiliac screw corridors based on CT scans of the pelvis. J Digit Imaging 24(4):665–671. doi:10.1007/s10278-010-9327-0

    Article  PubMed  Google Scholar 

  11. Rathnayaka K, Momot KI, Noser H, Volp A, Schuetz MA, Sahama T, Schmutz B (2012) Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models. Med Eng Phys 34(3):357–363. doi:10.1016/j.medengphy.2011.07.027

    Article  PubMed  Google Scholar 

  12. Rieber LP (1991) Animation, incidental learning, and continuing motivation. J Educ Psychol 83(3):318–328

    Article  Google Scholar 

  13. Rieber LP, Kini AS (1991) Theoretical foundations of instructional applications of computer-generated animated visuals. J Comput Based Instr 18(3):83–88

    Google Scholar 

  14. Savoldelli C, Bouchard PO, Loudad R, Baque P, Tillier Y (2012) Stress distribution in the temporo-mandibular joint discs during jaw closing: a high-resolution three-dimensional finite-element model analysis. Surg radiol anat SRA 34(5):405–413. doi:10.1007/s00276-011-0917-4

    Article  Google Scholar 

  15. Schmutz B, Rathnayaka K, Wullschleger ME, Meek J, Schuetz MA (2010) Quantitative fit assessment of tibial nail designs using 3D computer modelling. Injury 41(2):216–219. doi:10.1016/j.injury.2009.10.012

    Article  PubMed  CAS  Google Scholar 

  16. Schmutz B, Wullschleger ME, Kim H, Noser H, Schutz MA (2008) Fit assessment of anatomic plates for the distal medial tibia. J Orthop Trauma 22(4):258–263. doi:10.1097/BOT.0b013e31816b10ba

    Article  PubMed  Google Scholar 

  17. Seddon G, Eniaiyeju PA, Jusoh I (2009) The visualization of rotation in diagrams of threedimensional structures. Am Educ Res J 21:25–28

    Article  Google Scholar 

  18. Seebeck J, Goldhahn J, Stadele H, Messmer P, Morlock MM, Schneider E (2004) Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws. J Orthop Res Off Publ Orthop Res Soc 22(6):1237–1242. doi:10.1016/j.orthres.2004.04.001

    Article  CAS  Google Scholar 

  19. Surber SR, Leeder JA (1988) The effect of graphic feedback on student motivation. J Comp Based Instr 15(1):14–17

    Google Scholar 

  20. Tam MD (2010) Building virtual models by postprocessing radiology images: a guide for anatomy faculty. Anat Sci Educ 3(5):261–266. doi:10.1002/ase.175

    Article  PubMed  Google Scholar 

  21. Trelease RB, Rosset A (2008) Transforming clinical imaging data for virtual reality learning objects. Anat Sci Educ 1(2):50–55. doi:10.1002/ase.13

    Article  PubMed  Google Scholar 

  22. Wohlrab D, Radetzki F, Noser H, Mendel T (2012) Cup positioning in total hip arthoplasty: spatial alignment of the acetabular entry plane. Arch Orthop Trauma Surg 132(1):1–7. doi:10.1007/s00402-011-1379-1

    Article  PubMed  Google Scholar 

  23. Yagci AB, Kiroglu Y, Ozdemir B, Kara CO (2008) Three-dimensional computed tomography of a complete stylohyoid ossification with articulation. Surg Radiol Anat Sra 30(2):167–169. doi:10.1007/s00276-008-0302-0

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Radetzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radetzki, F., Mendel, T., Noser, H. et al. Potentialities and limitations of a database constructing three-dimensional virtual bone models. Surg Radiol Anat 35, 963–968 (2013). https://doi.org/10.1007/s00276-013-1118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-013-1118-0

Keywords

Navigation