Skip to main content
Log in

VegSyst, a simulation model of daily crop growth, nitrogen uptake and evapotranspiration for pepper crops for use in an on-farm decision support system

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

The VegSyst simulation model was developed to assist with N and irrigation management of sweet pepper grown in plastic greenhouses in the Mediterranean Basin. The model was developed for use in an on-farm decision support system with the requirement for readily available input data. Dry matter production (DMP), crop N uptake and crop evapotranspiration (ETc) are simulated on a daily basis. DMP is calculated from daily fraction of intercepted photosynthetically active radiation (PAR), PAR radiation, and radiation-use efficiency. Fraction of intercepted PAR is calculated from relative thermal time. Crop N uptake is calculated as the product of DMP and N content which is described by a power function of DMP. ETc is the product of daily reference evapotranspiration (ETo) using an adapted Penman–Monteith equation, and a daily simulated crop coefficient value. The VegSyst model for soil-grown, greenhouse pepper was calibrated in one crop and validated in three different crops. In the validation, the model accurately simulated crop growth, N uptake and ETc. Relative to measured values, simulated DMP at final harvest was 0.89–1.06, and crop N uptake was 0.97–1.13. Simulated cumulative ETc for complete crops was 0.95–1.05 of measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aikman DP (1989) Potential increase in photosynthetic efficiency from the redistribution of solar radiation in a crop. J Exp Bot 40:855–864

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. FAO, Rome, Italy

  • Andriolo JL (1995) Analyse des flux de NO3 , H2O et CO2 au cours de la culture et du nycthémère chez la tomate (Lycopersicon esculentum Mill.) adulte hors-sol. Thèse de Doctorat, Université de Montpellier II, France (In French)

  • Anon (1991) Council directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off J Eur Commun L135:1–8

  • Baille A (1999) Energy cycle. In: Stanhill G, Enoch HZ (eds) Greenhouse ecosystems. Ecosystems of the world 20. Elselvier, Amsterdam, pp 265–286

    Google Scholar 

  • Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Taylor X, Plenet D, Cellier P, Machet JM, Meynard JM, Delecolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18:311–346

    Article  Google Scholar 

  • Campbell GS, Van Evert FK (1994) Light interception by plant canopies. Efficiency and architecture. In: Monteith JL, Scott RK, Unsworth MH (eds) Resource capture by crops. Nottingham University Press, Nottingham, pp 35–52

    Google Scholar 

  • Castilla N (2002) Current situation and future prospects of protected crops in the mediterranean region. Acta Hortic 582:135–147

    Google Scholar 

  • Castilla N, Hernández J (2005) The plastic greenhouse industry of Spain. Chron Hort 45(3):15–20

    Google Scholar 

  • Castilla N, Hernández J, Abou-Hadid AF (2004) Strategic crop and greenhouse management in mild winter climate areas. Acta Hortic 633:183–196

    Google Scholar 

  • Céspedes AJ, García MC, Pérez-Parra JJ, Cuadrado IM (2009) Caracterización de la Explotación Hortícola Protegida Almeriense. Fundación para la Investigación Agraria en la Provincia de Almería. Almería, Spain (In Spanish)

  • Dorais M (2003) The use of supplemental lighting for vegetable crop production: light intensity, crop response, nutrition, crop management, cultural practices. http://www.canadiangreenhouseconference.com/talks/2003/2003-Dorais.pdf. Accessed 5 Nov 2011

  • Fernández MD, Orgaz F, Fereres E, López JC, Céspedes A, Pérez-Parra J, Bonachela, S, Gallardo M (2001) Programación del riego de cultivos hortícolas bajo invernadero en el sudeste español. Cajamar (Caja Rural Intermediterránea), Almería, Spain (In Spanish)

  • Fernández MD, Bonachela S, Orgaz F, Thompson RB, López JC, Granados MR, Gallardo M, Fereres E (2010) Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig Sci 28:497–509

    Article  Google Scholar 

  • Fernández MD, Bonachela S, Orgaz F, Thompson RB, López JC, Granados MR, Gallardo M, Fereres E (2011) Erratum to: measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig Sci 29:91–92

    Article  Google Scholar 

  • Granados MR, Thompson RB, Fernández MD, Martínez-Gaitán C, Gallardo M, Giménez C (2007) Reducing nitrate leaching with a simple model for nitrogen and irrigation management of fertigated vegetable crops. In: Bosch A, Teira MR, Villar JM (eds) Towards a better efficiency in N use. Proceedings of 15th N workshop, 27–30 May 2007, Lleida, Spain. Editorial Milenio, Lleida, Spain, pp 373–375

  • Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    CAS  Google Scholar 

  • Healey KD, Rickert KG, Hammer GL, Banger MP (1998) Radiation-use efficiency increases when the diffuse component of incident radiation is enhanced under shade. Aust J Agric Res 49:665–672

    Article  Google Scholar 

  • Jones JW, Tsuji GY, Hoogenboom G, Hunt LA, Thornton PK, Wilkens PW, Imamura DT, Bowen WT, Singh U (1998) Decision support systems for agrotechnology transfer DSSAT v3. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer, Dordrecht, pp 157–177

    Chapter  Google Scholar 

  • Karam F, Masaad R, Bachour R, Rhayem C, Rouphael Y (2009) Water and radiation use efficiencies in drip-irrigated pepper (Capsicum annuum L.): response to full and deficit irrigation regimes. Eur J Hort Sci 74(2):79–85

    Google Scholar 

  • Kittas C, Baille A, Giaglaras P (1999) Influence of cover material and shading on the spectral distribution of light under greenhouse. J Agric Eng Res 73:341–351

    Article  Google Scholar 

  • Le Bot J, Adamowicz S, Robin P, Andriolo JL, Gary C (1998) Modelling nitrate uptake by greenhouses tomato crops at the short and long time scales. Acta Hortic 456:237–245

    Google Scholar 

  • Lemaire G, Gastal F (1997) N uptake and distribution in plant canopies. In: Lemaire G (ed) Diagnosis of nitrogen status in crops. Springer, Berlin, pp 3–41

    Chapter  Google Scholar 

  • Lorenzo P (1994) Intercepción de luz, bioproductividad e intercambio gaseoso durante la ontogenia del cultivo de pepino (Cucumis Sativus L.) en invernadero. Junta de Andalucía, Consejería de Agricultura y Pesca (ed). Dirección General de Investigación y Formación Agraria, Servicio de Publicaciones y Divulgación. Monografía No. 17/96 (In Spanish)

  • Marcelis LFM, Brajeul E, Elings A, Garate A, Heuvelink E, de Visser PHB (2005) Modelling nutrient uptake of sweet pepper. Acta Hortic 691:285–292

    Google Scholar 

  • Montgomery D, Peck EA (1992) Introduction to linear regression analysis, 2nd edn. A Wiley-Interscience Publication, New York

    Google Scholar 

  • Murphy DV, Stockdale EA, Hoyle FC, Smith JU, Fillery IRP, Milton N, Cookson WR, Brussard L, Jones DL (2004) Matching supply with demand. In: Hatch DJ, Chadwick DR, Jarvis SC, Roker JA (eds) Controlling nitrogen flows and losses. Wageningen Academic Publishers, The Netherlands, pp 101–112

    Google Scholar 

  • Orgaz F, Fernández MD, Bonachela S, Gallardo M, Fereres E (2005) Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agric Water Manage 72:81–96

    Article  Google Scholar 

  • Oyarzún R, Stöckle CO, Wu J, Whiting M (2011) In field assessment on the relationship between photosynthetic active radiation (PAR) and global solar radiation transmittance through discontinuous canopies. Chil J Agric Res 71:122–131

    Article  Google Scholar 

  • Pardossi A, Tognoni F, Incrocci L (2004) Mediterranean greenhouse technology. Chron Hortic 44(2):28–34

    Google Scholar 

  • Pratt PF (1984) Nitrogen use and nitrate leaching in irrigated agriculture. In: Hauck RD (ed) Nitrogen in crop production. American Society of Agronomy, Madison, pp 319–333

    Google Scholar 

  • Pulido-Bosch A (2005) Recarga en la Sierra de Gádor e Hidrogeoquímica de los aquíferos del Campo de Dalías. Escobar Impresores SL, El Ejido, Almería, Spain (In Spanish)

  • Ritchie JT, Singh U, Godwin DC, Bowen WT (1998) Cereal growth, development, and yield. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer, Dordrecht, pp 79–98

    Chapter  Google Scholar 

  • Rouphael Y, Colla G (2005) Radiation and water use efficiencies of greenhouse zucchini squash in relation to different climate parameters. Eur J Agron 23:183–194

    Article  Google Scholar 

  • Sinclair TR, Shiraiwa T, Hammer GL (1992) Variation in crop radiation-use efficiency with increased diffuse radiation. Crop Sci 32:1281–1284

    Article  Google Scholar 

  • Stöckle CO, Kemanian AR (2009) Crop radiation capture and use efficiency: a framework for crop growth analysis. In: Sadras VO, Calderini D (eds) Crop physiology: applications for genetic improvement and agronomy. Academic Press/Elsevier, Amsterdam, pp 145–170

    Google Scholar 

  • Stöckle CO, Kiniry JR (1990) Variability in crop radiation use efficiency associated with vapor-pressure deficit. Field Crop Res 25:171–181

    Article  Google Scholar 

  • Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307

    Article  Google Scholar 

  • Stöckle CO, Kjelgaard J, Bellocchi G (2004) Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration. Irrig Sci 23:39–46

    Article  Google Scholar 

  • Tei F, Benincasa P, Guiducci M (2002) Critical nitrogen concentration in processing tomato. Eur J Agron 18:45–55

    Article  CAS  Google Scholar 

  • Thompson RB, Morse D, Kelling K, Lanyon L (1997) Computer programs that calculate manure application rates. J Prod Agric 10:58–69

    Google Scholar 

  • Thompson RB, Martínez-Gaitán C, Gallardo M, Giménez C, Fernández MD (2007) Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric Water Manage 89:261–274

    Article  Google Scholar 

  • USDA FAS (2010) Mexico, greenhouse and shade house production to continue increasing. GAIN report no. MX0024, date 22 April 2010. USDA Foreign Agricultural Service http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Greenhouse%20and%20Shade%20House%20Production%20to%20Continue%20Increasing_Mexico_Mexico_4-22-2010.pdf. Accessed 31 August 2011

  • Vieira MI, de Melo-Abreu JP, Ferreira ME, Monteiro AA (2009) Dry matter and area partitioning, radiation interception and radiation-use efficiency in open-field bell pepper. Sci Hortic 121:404–409

    Article  Google Scholar 

  • Williams JR, Jones CA, Dyke PT (1984) A modeling approach to determining the relationship between erosion and soil productivity. Trans ASAE 27:129–144

    Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteor Soc 63:1309–1313

    Article  Google Scholar 

  • Wittwer SH, Castilla N (1995) Protected cultivation of horticultural crops worldwide. Hort Technol 3:6–19

    Google Scholar 

  • Zalom FG, Goodell PB, Wilson LT, Barnett WW, Bentley WJ (1983) Degree-days: the calculation and use of heat units in pest management. Cooperative Extension Publ. Univ. California, University of California, USA

Download references

Acknowledgments

This work was funded with Project AGL2004-07399 granted by the Spanish Ministry of Education and Science and co-financed by FEDER, and with Project AGL2008-03774/AGR granted by the Spanish Ministry of Education and Science and co-financed by FEDER. We thank the Experimental Station of the Cajamar Foundation for their excellent and considerable collaboration and assistance during the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Thompson.

Additional information

Communicated by K. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giménez, C., Gallardo, M., Martínez-Gaitán, C. et al. VegSyst, a simulation model of daily crop growth, nitrogen uptake and evapotranspiration for pepper crops for use in an on-farm decision support system. Irrig Sci 31, 465–477 (2013). https://doi.org/10.1007/s00271-011-0312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-011-0312-2

Keywords

Navigation