Skip to main content

Advertisement

Log in

Metal Artifact Reduction for Orthopedic Prosthesis in Lower Extremity CT Venography: Evaluation of Image Quality and Vessel Conspicuity

  • Clinical Investigation
  • Imaging
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study evaluates the image quality of lower extremity CT venography reconstructed with orthopedic metal artifact reduction (O-MAR) in patients with unilateral or bilateral metallic prostheses in the hip or knee.

Methods

This retrospective study was approved by our institutional review board, and informed consent was waived. Twenty-nine patients of lower extremity CT with 51 metallic hip or knee prostheses were reconstructed to both standard CT images and O-MAR images. The subjective image quality and vessel conspicuity for both images were evaluated by two readers using five-point scales (0–4). Vessel conspicuity scores of 3 or 4 were considered diagnostically acceptable. Image noise was measured in the air and subcutaneous fat.

Results

O-MAR images showed significantly higher scores of subjective image quality (p < .001) and vessel conspicuity (p = .002) than standard CT images. Diagnostic acceptance of vessel conspicuity was not significantly different between O-MAR images and standard CT images (p = 1.000). O-MAR images showed significantly less image noise than conventional CT images (p < .001 for both air and subcutaneous fat).

Conclusion

O-MAR may be an effective solution for the metal artifacts in lower extremity CT venography; however, the distance between prostheses and vessels affects the diagnostic acceptance in patients with metallic hip or knee prostheses.

Level of Evidence

Level 4, Case Series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Birrell F, Johnell O, Silman A. Projecting the need for hip replacement over the next three decades: influence of changing demography and threshold for surgery. Ann Rheum Dis. 1999;58(9):569–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Januel JM, Chen G, Ruffieux C, Quan H, Douketis JD, Crowther MA, et al. Symptomatic in-hospital deep vein thrombosis and pulmonary embolism following hip and knee arthroplasty among patients receiving recommended prophylaxis: a systematic review. JAMA. 2012;307(3):294–303. https://doi.org/10.1001/jama.2011.2029.

    Article  CAS  PubMed  Google Scholar 

  3. Buckwalter KA, Lin C, Ford JM. Managing postoperative artifacts on computed tomography and magnetic resonance imaging. Semin Musculoskelet Radiol. 2011;15(4):309–19. https://doi.org/10.1055/s-0031-1286013.

    Article  PubMed  Google Scholar 

  4. Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiograph Rev Publ Radiol Soc North Am. 2004;24(6):1679–91. https://doi.org/10.1148/rg.246045065.

    Article  Google Scholar 

  5. Lee MJ, Kim S, Lee SA, Song HT, Huh YM, Kim DH, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiograph Rev Publ Radiol Soc North Am. 2007;27(3):791–803. https://doi.org/10.1148/rg.273065087.

    Article  Google Scholar 

  6. Boas FE, Fleischmann D. Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology. 2011;259(3):894–902. https://doi.org/10.1148/radiol.11101782.

    Article  PubMed  Google Scholar 

  7. Cronin CG, Lohan DG, Keane M, Roche C, Murphy JM. Prevalence and significance of asymptomatic venous thromboembolic disease found on oncologic staging CT. Am J Roentgenol. 2007;189(1):162–70. https://doi.org/10.2214/AJR.07.2067.

    Article  Google Scholar 

  8. Ghaye B, Szapiro D, Willems V, Dondelinger RF. Pitfalls in CT venography of lower limbs and abdominal veins. AJR Am J Roentgenol. 2002;178(6):1465–71. https://doi.org/10.2214/ajr.178.6.1781465.

    Article  CAS  PubMed  Google Scholar 

  9. Bamberg F, Dierks A, Nikolaou K, Reiser M, Becker C, Johnson TC. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424–9. https://doi.org/10.1007/s00330-011-2062-1.

    Article  PubMed  Google Scholar 

  10. Mumoli N, Vitale J, Cocciolo M, Cei M, Brondi B, Basile V, et al. Accuracy of nurse-performed compression ultrasonography in the diagnosis of proximal symptomatic deep vein thrombosis: a prospective cohort study. J Thromb Haemost JTH. 2014;12(4):430–5. https://doi.org/10.1111/jth.12522.

    Article  PubMed  Google Scholar 

  11. Glover GH, Pelc NJ. An algorithm for the reduction of metal clip artifacts in CT reconstructions. Med Phys. 1981;8(6):799–807.

    Article  CAS  PubMed  Google Scholar 

  12. Wang G, Snyder DL, O'Sullivan JA, Vannier MW. Iterative deblurring for CT metal artifact reduction. IEEE Trans Med Imaging. 1996;15(5):657–64. https://doi.org/10.1109/42.538943.

    Article  CAS  PubMed  Google Scholar 

  13. Yasaka K, Maeda E, Hanaoka S, Katsura M, Sato J, Ohtomo K. Single-energy metal artifact reduction for helical computed tomography of the pelvis in patients with metal hip prostheses. Jpn J Radiol. 2016;34(9):625–32.

    Article  CAS  PubMed  Google Scholar 

  14. Kidoh M, Nakaura T, Nakamura S, Tokuyasu S, Osakabe H, Harada K, et al. Reduction of dental metallic artefacts in CT: value of a newly developed algorithm for metal artefact reduction (O-MAR). Clin Radiol. 2014;69(1):e11–6. https://doi.org/10.1016/j.crad.2013.08.008.

    Article  CAS  PubMed  Google Scholar 

  15. Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology. 2013;268(1):237–44. https://doi.org/10.1148/radiol.13122089.

    Article  PubMed  Google Scholar 

  16. Shinohara Y, Sakamoto M, Iwata N, Kishimoto J, Kuya K, Fujii S, et al. Usefulness of monochromatic imaging with metal artifact reduction software for computed tomography angiography after intracranial aneurysm coil embolization. Acta Radiol. 2014;55(8):1015–23. https://doi.org/10.1177/0284185113510492.

    Article  PubMed  Google Scholar 

  17. Sunwoo L, Park S-W, Rhim JH, Kang Y, Chung YS, Son Y-J, et al. Metal artifact reduction for orthopedic implants: brain CT angiography in patients with intracranial metallic implants. J Korean Med Sci. 2018;33(21):e158. https://doi.org/10.3346/jkms.2018.33.e158.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kidoh M, Utsunomiya D, Oda S, Nakaura T, Funama Y, Yuki H, et al. CT venography after knee replacement surgery: comparison of dual-energy CT-based monochromatic imaging and single-energy metal artifact reduction techniques on a 320-row CT scanner. Acta Radiol Open. 2017;6(2):2058460117693463. https://doi.org/10.1177/2058460117693463.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiograph Rev Publ Radiol Soc North Am. 2018;38(2):450–61. https://doi.org/10.1148/rg.2018170102.

    Article  Google Scholar 

  20. Yu L, Li H, Mueller J, Kofler JM, Liu X, Primak AN, et al. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: techniques and initial clinical results. Investig Radiol. 2009;44(11):691–6. https://doi.org/10.1097/RLI.0b013e3181b0a2f9.

    Article  Google Scholar 

  21. Lubner MG, Pickhardt PJ, Tang J, Chen GH. Reduced image noise at low-dose multidetector CT of the abdomen with prior image constrained compressed sensing algorithm. Radiology. 2011;260(1):248–56. https://doi.org/10.1148/radiol.11101380.

    Article  PubMed  Google Scholar 

  22. Qi L, Meinel FG, Zhou CS, Zhao YE, Schoepf UJ, Zhang LJ, et al. Image quality and radiation dose of lower extremity CT angiography using 70 kVp, high pitch acquisition and sinogram-affirmed iterative reconstruction. PloS One. 2014;9(6):e99112. https://doi.org/10.1371/journal.pone.0099112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Metal Artifact Reduction for Orthopedic Implants (O-MAR). Philips CT Clinical Science. 2012. https://clinical.netforum.healthcare.philips.com/us_en/Explore/White-Papers/CT/Metal-Artifact-Reduction-for-Orthopedic-Implants-(O-MAR). Accessed 1 Dec 2018.

  24. Byun SS, Kim JH, Kim YJ, Jeon YS, Park CH, Kim WH. Evaluation of deep vein thrombosis with multidetector row CT after orthopedic arthroplasty: a prospective study for comparison with Doppler sonography. Korean J Radiol Off J Korean Radiol Soc. 2008;9(1):59–66. https://doi.org/10.3348/kjr.2008.9.1.59.

    Article  Google Scholar 

  25. Cogo A, Lensing AW, Prandoni P, Hirsh J. Distribution of thrombosis in patients with symptomatic deep vein thrombosis Implications for simplifying the diagnostic process with compression ultrasound. Arch Intern Med. 1993;153(24):2777–80.

    Article  CAS  PubMed  Google Scholar 

  26. Hirsh J, Lee AY. How we diagnose and treat deep vein thrombosis. Blood. 2002;99(9):3102–10.

    Article  CAS  PubMed  Google Scholar 

  27. Coupal TM, Mallinson PI, McLaughlin P, Nicolaou S, Munk PL, Ouellette H. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skelet Radiol. 2014;43(5):567–75. https://doi.org/10.1007/s00256-013-1802-5.

    Article  Google Scholar 

  28. Yue D, Fan Rong C, Ning C, Liang H, Ai Lian L, Ru Xin W, et al. Reduction of metal artifacts from unilateral hip arthroplasty on dual-energy CT with metal artifact reduction software. Acta Radiol. 2018;59(7):853–60. https://doi.org/10.1177/0284185117731475.

    Article  PubMed  Google Scholar 

  29. Boudabbous S, Arditi D, Paulin E, Syrogiannopoulou A, Becker C, Montet X. Model-based iterative reconstruction (MBIR) for the reduction of metal artifacts on CT. Am J Roentgenol. 2015;205(2):380–5. https://doi.org/10.2214/AJR.14.13334.

    Article  Google Scholar 

  30. Wellenberg RHH, Hakvoort ET, Slump CH, Boomsma MF, Maas M, Streekstra GJ. Metal artifact reduction techniques in musculoskeletal CT-imaging. Eur J Radiol. 2018;107:60–9. https://doi.org/10.1016/j.ejrad.2018.08.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Nam Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Ethical Approval

This study has obtained IRB approval from SMG-SNU Boramae medical center and the need for informed consent was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, H., Chai, J.W., Choi, Y.H. et al. Metal Artifact Reduction for Orthopedic Prosthesis in Lower Extremity CT Venography: Evaluation of Image Quality and Vessel Conspicuity. Cardiovasc Intervent Radiol 42, 1619–1626 (2019). https://doi.org/10.1007/s00270-019-02326-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-019-02326-2

Keywords

Navigation