Skip to main content
Log in

Fusion Imaging and Virtual Navigation to Guide Percutaneous Thermal Ablation of Hepatocellular Carcinoma: A Review of the Literature

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

As medical imaging advancements have improved the detectability of hepatocellular carcinoma (HCC) in early stages, the approach to percutaneous thermal ablation for curative treatment has concomitantly advanced. Although many centers are adopting cross-sectional imaging to guide percutaneous ablation, the majority of procedures are still performed under ultrasound (US) guidance worldwide. Challenges to ultrasound guidance may present due to relatively poor resolution particularly with small or isoechoic lesions, or due to intervening structures such as the bowel or diaphragm that obstruct lesional visualization. Fusion imaging (FI) systems have been employed to address these challenges. By merging or synchronizing the real-time images from US with a previously obtained cross-sectional study, FI mitigates the inherent limitations of each individual imaging modality and expands procedural feasibility and technical outcomes. This manuscript reviews the current literature on the use of FI during percutaneous thermal ablation of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Livraghi T, et al. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology. 2007;47(1):82–9.

    Article  Google Scholar 

  3. Choi D, et al. Percutaneous radiofrequency ablation for early-stage hepatocellular carcinoma as a first-line treatment: long-term results and prognostic factors in a large single-institution series. Eur Radiol. 2007;17(3):684–92.

    Article  PubMed  Google Scholar 

  4. Samanci C, et al. Magnetic resonance imaging in diagnosis and monitoring of hepatocellular carcinoma in liver transplantation: a comprehensive review. Ann Transplant. 2016;21:68–76.

    Article  CAS  PubMed  Google Scholar 

  5. Park HJ, Lee JM, Park SB, Lee JB, Jeong YK, Yoon JH. Comparison of knowledge-based iterative model reconstruction and hybrid reconstruction techniques for liver CT evaluation of hypervascular hepatocellular carcinoma. J Comput Assist Tomogr. 2016;40(6):863–71.

    Article  PubMed  Google Scholar 

  6. Mauri G, et al. Real-Time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol. 2015;38(1):143–51.

    Article  PubMed  Google Scholar 

  7. Hakime A, Yevich S, Tselikas L, Deschamps F, Petrover D, De Baere T. Percutaneous thermal ablation with ultrasound guidance. Fusion imaging guidance to improve conspicuity of liver metastasis. Cardiovasc Intervent Radiol. 2017;40(5):721–7.

    Article  PubMed  Google Scholar 

  8. Lee MW, et al. Targeted sonography for small hepatocellular carcinoma discovered by CT or MRI: factors affecting sonographic detection. Am J Roentgenol. 2010;194(5):W396–400.

    Article  Google Scholar 

  9. Kunishi Y, et al. Efficacy of fusion imaging combining sonography and hepatobiliary phase MRI With Gd-EOB-DTPA to detect small hepatocellular carcinoma. Am J Roentgenol. 2012;198(1):106–14.

    Article  Google Scholar 

  10. Jo PC, Jang H-J, Burns PN, Burak KW, Kim TK, Wilson SR. Integration of contrast-enhanced US into a multimodality approach to imaging of nodules in a cirrhotic liver: how I do it. Radiology. 2017;282(2):317–31.

    Article  PubMed  Google Scholar 

  11. Dong Y, Wang W-P, Mao F, Ji Z-B, Huang B-J. Application of imaging fusion combining contrast-enhanced ultrasound and magnetic resonance imaging in detection of hepatic cellular carcinomas undetectable by conventional ultrasound: hepatocellular carcinoma imaging fusion. J Gastroenterol Hepatol. 2016;31(4):822–8.

    Article  PubMed  Google Scholar 

  12. Mauri G, et al. Intraprocedural contrast-enhanced ultrasound (CEUS) in liver percutaneous radiofrequency ablation: clinical impact and health technology assessment. Insights Imaging. 2014;5(2):209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Claudon M, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver—update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultrasound Med Biol. 2013;39(2):187–210.

    Article  PubMed  Google Scholar 

  14. Weiss J, Hoffmann R, Clasen S. MR-guided liver interventions: top. Magn Reson Imaging. 2018;27(3):163–70.

    Article  Google Scholar 

  15. Bale R, Widmann G, Haidu M. Stereotactic radiofrequency ablation. Cardiovasc Intervent Radiol. 2011;34(4):852–6.

    Article  PubMed  Google Scholar 

  16. Braak SJ, van Strijen MJL, van Leersum M, van Es HW, van Heesewijk JPM. Real-time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. Am J Roentgenol. 2010;194(5):W445–51.

    Article  CAS  Google Scholar 

  17. Maybody M, Stevenson C, Solomon SB. Overview of navigation systems in image-guided interventions. Tech Vasc Interv Radiol. 2013;16(3):136–43.

    Article  PubMed  Google Scholar 

  18. Minami Y, et al. Ultrasound-ultrasound image overlay fusion improves real-time control of radiofrequency ablation margin in the treatment of hepatocellular carcinoma. Eur Radiol. 2018;28(5):1986–93.

    Article  PubMed  Google Scholar 

  19. Ewertsen C, Săftoiu A, Gruionu LG, Karstrup S, Nielsen MB. Real-time image fusion involving diagnostic ultrasound. Am J Roentgenol. 2013;200(3):W249–55.

    Article  Google Scholar 

  20. Lee MW, et al. Percutaneous radiofrequency ablation of hepatocellular carcinoma: fusion imaging guidance for management of lesions with poor conspicuity at conventional sonography. Am J Roentgenol. 2012;198(6):1438–44.

    Article  Google Scholar 

  21. Li K, Su Z-Z, Xu E-J, Ju J-X, Meng X-C, Zheng R-Q. Improvement of ablative margins by the intraoperative use of CEUS–CT/MR image fusion in hepatocellular carcinoma. BMC Cancer. 2016;16(1):277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee MW. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography. 2014;33(4):227–39.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liberati A, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rhim H, Lee MH, Kim Y, Choi D, Lee WJ, Lim HK. Planning sonography to assess the feasibility of percutaneous radiofrequency ablation of hepatocellular carcinomas. Am J Roentgenol. 2008;190(5):1324–30.

    Article  Google Scholar 

  25. Kim J-E, et al. Outcomes of patients with hepatocellular carcinoma referred for percutaneous radiofrequency ablation at a tertiary center: analysis focused on the feasibility with the use of ultrasonography guidance. Eur J Radiol. 2011;79(2):e80–4.

    Article  PubMed  Google Scholar 

  26. Bo X-W, et al. Fusion imaging of contrast-enhanced ultrasound and contrast-enhanced CT or MRI before radiofrequency ablation for liver cancers. Br J Radiol. 2016;89(1067):20160379.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim PN, et al. Planning ultrasound for percutaneous radiofrequency ablation to treat small (≤ 3 cm) hepatocellular carcinomas detected on computed tomography or magnetic resonance imaging: a multicenter prospective study to assess factors affecting ultrasound visibility. J Vasc Interv Radiol. 2012;23(5):627–34.

    Article  PubMed  Google Scholar 

  28. Makino Y, et al. Ultrasonography fusion imaging system increases the chance of radiofrequency ablation for hepatocellular carcinoma with poor conspicuity on conventional ultrasonography. Oncology. 2013;84(s1):44–50.

    Article  PubMed  Google Scholar 

  29. Lee MW, Rhim H, Ik Cha D, Jun Kim Y, Lim HK. Planning US for percutaneous radiofrequency ablation of small hepatocellular carcinomas (1–3 cm): value of fusion imaging with conventional US and CT/MR images. J Vasc Interv Radiol. 2013;24(7):958–65.

    Article  PubMed  Google Scholar 

  30. Matsui O, et al. Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis. Abdom Imaging. 2011;36(3):264–72.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sultana S, et al. Hypervascular hepatocellular carcinomas: bolus tracking with a 40-detector ct scanner to time arterial phase imaging. Radiology. 2007;243(1):140–7.

    Article  PubMed  Google Scholar 

  32. Arif-Twari H, et al. MRI of hepatocellular carcinoma: an update of current practices. Diagn Interv Radiol. 2014;20(3):209–21.

    Article  Google Scholar 

  33. Lee JY, Choi BI, Chung YE, Kim MW, Kim SH, Han JK. Clinical value of CT/MR-US fusion imaging for radiofrequency ablation of hepatic nodules. Eur J Radiol. 2012;81(9):2281–9.

    Article  PubMed  Google Scholar 

  34. Song KD, et al. Percutaneous US/MRI fusion–guided radiofrequency ablation for recurrent subcentimeter hepatocellular carcinoma: technical feasibility and therapeutic outcomes. Radiology. 2018;288(3):878–86.

    Article  PubMed  Google Scholar 

  35. Minami T, et al. Combination guidance of contrast-enhanced US and fusion imaging in radiofrequency ablation for hepatocellular carcinoma with poor conspicuity on contrast-enhanced US/fusion imaging. Oncology. 2014;87(s1):55–62.

    Article  PubMed  Google Scholar 

  36. Min JH, et al. Radiofrequency ablation of very-early-stage hepatocellular carcinoma inconspicuous on fusion imaging with B-mode US: value of fusion imaging with contrast-enhanced US. Clin Mol Hepatol. 2014;20(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu Z-F, et al. Percutaneous radiofrequency ablation of malignant liver tumors with ultrasound and CT fusion imaging guidance: percutaneous RFA of malignant liver tumors. J Clin Ultrasound. 2014;42(6):321–30.

    Article  PubMed  Google Scholar 

  38. Ahn SJ, et al. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma. J Hepatol. 2017;66(2):347–54.

    Article  PubMed  Google Scholar 

  39. Brunello F, et al. Radiofrequency ablation versus ethanol injection for early hepatocellular carcinoma: a randomized controlled trial. Scand J Gastroenterol. 2008;43(6):727–35.

    Article  PubMed  Google Scholar 

  40. Lim S, et al. Mistargeting after fusion imaging-guided percutaneous radiofrequency ablation of hepatocellular carcinomas. J Vasc Interv Radiol. 2014;25(2):307–14.

    Article  PubMed  Google Scholar 

  41. Mauri G, et al. Tips and tricks for a safe and effective image-guided percutaneous renal tumour ablation. Insights Imaging. 2017;8(3):357–63.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bo X-W, et al. Ablative safety margin depicted by fusion imaging with post-treatment contrast-enhanced ultrasound and pre-treatment CECT/CEMRI after radiofrequency ablation for liver cancers. Br J Radiol. 2017;90(1078):20170063.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xu E-J, et al. Immediate evaluation and guidance of liver cancer thermal ablation by three-dimensional ultrasound/contrast-enhanced ultrasound fusion imaging. Int J Hyperth. 2017;34:1–7.

    Google Scholar 

  44. Yang M, Ding H, Zhu L, Wang G. Ultrasound fusion image error correction using subject-specific liver motion model and automatic image registration. Comput Biol Med. 2016;79:99–109.

    Article  PubMed  Google Scholar 

  45. Mauri G et al. Virtual navigator automatic registration technology in abdominal application, In: Conference on proceedings of the annual international conference of the IEEE engineering in medicine and biology society, vol 2014; 2014, p. 5570–4.

  46. Song KD, Lee MW, Rhim H, Cha DI, Chong Y, Lim HK. Fusion imaging-guided radiofrequency ablation for hepatocellular carcinomas not visible on conventional ultrasound. Am J Roentgenol. 2013;201(5):1141–7.

    Article  Google Scholar 

  47. Min JH, et al. Local tumour progression after loco-regional therapy of hepatocellular carcinomas: value of fusion imaging-guided radiofrequency ablation. Clin Radiol. 2014;69(3):286–93.

    Article  CAS  PubMed  Google Scholar 

  48. Park HJ, et al. Percutaneous ultrasonography-guided radiofrequency ablation of hepatocellular carcinomas: usefulness of image fusion with three-dimensional ultrasonography. Clin Radiol. 2015;70(4):387–94.

    Article  CAS  PubMed  Google Scholar 

  49. Makino Y, et al. Feasibility of extracted-overlay fusion imaging for intraoperative treatment evaluation of radiofrequency ablation for hepatocellular carcinoma. Liver Cancer. 2016;5(4):269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ewertsen C, Henriksen B, Torp-Pedersen S, Bachmann Nielsen M. Characterization by biopsy or CEUS of liver lesions guided by image fusion between ultrasonography and CT, PET/CT or MRI. Ultraschall Med Eur J Ultrasound. 2011;32(2):191–7.

    Article  CAS  Google Scholar 

  51. Makino Y, et al. Usefulness of the extracted-overlay function in CT/MR-ultrasonography fusion imaging for radiofrequency ablation of hepatocellular carcinoma. Dig Dis. 2013;31(5–6):485–9.

    Article  PubMed  Google Scholar 

  52. Numata K, et al. Use of fusion imaging combining contrast-enhanced ultrasonography with a perflubutane-based contrast agent and contrast-enhanced computed tomography for the evaluation of percutaneous radiofrequency ablation of hypervascular hepatocellular carcinoma. Eur J Radiol. 2012;81(10):2746–53.

    Article  PubMed  Google Scholar 

  53. Xu E, et al. Comparison of CT/MRI–CEUS and US–CEUS fusion imaging techniques in the assessment of the thermal ablation of liver tumors. Int J Hyperth. 2018;35:1–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Calandri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This study was not supported by any funding and does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calandri, M., Mauri, G., Yevich, S. et al. Fusion Imaging and Virtual Navigation to Guide Percutaneous Thermal Ablation of Hepatocellular Carcinoma: A Review of the Literature. Cardiovasc Intervent Radiol 42, 639–647 (2019). https://doi.org/10.1007/s00270-019-02167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-019-02167-z

Keywords

Navigation