Skip to main content

Advertisement

Log in

The Changing Face of Vascular Interventional Radiology: The Future Role of Pharmacotherapies and Molecular Imaging

  • Review/State of the Art
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dotter CT, Judkins MP (1964) Transluminal treatment of arteriosclerotic obstruction: description of a new technic and a preliminary report of its application. Circulation 30:654–670

    Article  PubMed  CAS  Google Scholar 

  2. Power S, Slattery MM, Lee MJ (2011) Nanotechnology and its relationship to interventional radiology. Part I: imaging. Cardiovasc Intervent Radiol 34:221–226

    Article  PubMed  Google Scholar 

  3. Power S, Slattery MM, Lee MJ (2011) Nanotechnology and its relationship to interventional radiology. Part II: drug delivery, thermotherapy, and vascular intervention. Cardiovasc Intervent Radiol 34:676–690

    Article  PubMed  Google Scholar 

  4. Smilde TJ, van Wissen S, Wollersheim H et al (2001) Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet 357:577–581

    Article  PubMed  CAS  Google Scholar 

  5. Van Wissen S, Smilde TJ, Trip MD et al (2005) Long term safety and efficacy of high-dose atorvastatin treatment in patients with familial hypercholesterolemia. Am J Cardiol 95:264–266

    Article  PubMed  Google Scholar 

  6. Kastelein JJ, Akdim F, Stroes ES et al (2008) Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med 358:1431–1443

    Article  PubMed  CAS  Google Scholar 

  7. Versmissen J, Oosterveer DM, Yazdanpanah M et al (2008) Efficacy of statins in familial hypercholesterolemia: a long-term cohort study. BMJ 11:337

    Google Scholar 

  8. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  PubMed  CAS  Google Scholar 

  9. Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478

    Article  PubMed  CAS  Google Scholar 

  10. Sawamura T, Kume N, Aoyama T et al (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386:73–77

    Article  PubMed  CAS  Google Scholar 

  11. Mehta JL, Chen J, Hermonat PL et al (2006) Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 69:36–45

    Article  PubMed  CAS  Google Scholar 

  12. Kume N, Murase T, Moriwaki H (1998) Inducible expression of lectin-like oxidized LDL receptor-1 in vascular endothelial cells. Circ Res 83:322–327

    Article  PubMed  CAS  Google Scholar 

  13. Li DY, Zhang YC, Philips MI (1999) Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res 84:1043–1049

    Article  PubMed  CAS  Google Scholar 

  14. Morawietz H, Duerrschmidt N, Niemann B (2001) Induction of the oxLDL receptor LOX-1 by endothelin-1 in human endothelial cells. Biochem Biophys Res Commun 284:961–965

    Article  PubMed  CAS  Google Scholar 

  15. Kita T (1999) LOX-1, a possible clue to the missing link between hypertension and atherogenesis. Circ Res 84:1113–1115

    Article  PubMed  CAS  Google Scholar 

  16. Chen M, Kakutani M, Minami M (2000) Increased expression of lectin-like oxidized low density lipoprotein receptor-1 in initial atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol 20:1107–1115

    Article  PubMed  CAS  Google Scholar 

  17. Chen H, Li D, Sawamura T (2000) Upregulation of LOX-1 expression in aorta of hypercholesterolemic rabbits: modulation by losartan. Biochem Biophys Res Commun 276:1100–1104

    Article  PubMed  CAS  Google Scholar 

  18. Inoue K, Arai Y, Kurihara H (2005) Overexpression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice. Circ Res 97:176–184

    Article  PubMed  CAS  Google Scholar 

  19. Mehta JL, Sanada N, Chen J et al (2007) Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 100:1634–1642

    Article  PubMed  CAS  Google Scholar 

  20. Kataoka H, Kume N, Miyamoto S et al (1999) Expression of lectin-like oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 99:3110–3117

    Article  PubMed  CAS  Google Scholar 

  21. Morawietz H, Erbs S, Holtz J et al (2006) Endothelial protection, AT1 blockade and cholesterol-dependent oxidative stress: the EPAS trial. Circulation 114:296–301

    Article  Google Scholar 

  22. Zhou B, Ma FX, Liu PX et al (2007) Impaired therapeutic vasculogenesis by transplantation of OxLDL-treated endothelial progenitor cells. J Lipid Res 48:518–527

    Article  PubMed  CAS  Google Scholar 

  23. Llevadot J, Murasawa S, Kureishi Y et al (2001) HMG–CoA reductase inhibitor mobilizes bone marrow–derived endothelial progenitor cells. J Clin Invest 108:399–405

    PubMed  CAS  Google Scholar 

  24. van Oostrom O, Nieuwdorp M, Westerweel PE et al (2007) Reconstituted HDL increases circulating endothelial progenitor cells in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol 27:1864–1865

    Article  PubMed  Google Scholar 

  25. Neptune ER, Frischmeyer PA, Arking DE et al (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    Article  PubMed  CAS  Google Scholar 

  26. Habashi JP, Judge DP, Holm TM et al (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    Article  PubMed  CAS  Google Scholar 

  27. Nagashima H, Sakomura Y, Aoka Y et al (2001) Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis in cystic medial degeneration associated with Marfan’s syndrome. Circulation 104(Suppl 1):I282–I287

    PubMed  CAS  Google Scholar 

  28. Ahimastos AA, Aggarwal A, D’Orsa KM et al (2007) Effect of perindopril on large artery stiffness and aortic root diameter in patients with Marfan syndrome: a randomized controlled trial. JAMA 298:1539–1547

    Article  PubMed  CAS  Google Scholar 

  29. Asmar RG, London GM, O’Rourke ME, Safar ME (2001) Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: a comparison with atenolol. Hypertension 38:922–926

    Article  PubMed  CAS  Google Scholar 

  30. Girerd X, Giannattasio C, Moulin C et al (1998) Regression of radial artery wall hypertrophy and improvement of carotid artery compliance after long-term antihypertensive treatment in elderly patients. J Am Coll Cardiol 31:1064–1073

    Article  PubMed  CAS  Google Scholar 

  31. Pannier BM, Guerin AP, Marchais SJ, London GM (2001) Different aortic reflection wave responses following long-term angiotensin-converting enzyme inhibition and beta-blocker in essential hypertension. Clin Exp Pharmacol Physiol 28:1074–1077

    Article  PubMed  CAS  Google Scholar 

  32. Loeys BL, Chen J, Neptune ER et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281

    Article  PubMed  CAS  Google Scholar 

  33. Loeys BL, Schwarze U, Holm T et al (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 355:788–798

    Article  PubMed  CAS  Google Scholar 

  34. Léauté-Labrèze C, Dumas de la Roque E, Hubiche T et al (2008) Propranolol for severe hemangiomas of infancy. N Engl J Med 358:2451–2649

    Article  Google Scholar 

  35. Frieden IJ, Haggstrom AN, Drolet BA et al (2005) Infantile hemangiomas: current knowledge, future directions: proceedings of a research workshop on infantile hemangiomas. Pediatr Dermatol 22:383–406

    Article  PubMed  Google Scholar 

  36. D’Angelo G, Lee H, Weiner RI (1997) cAMP-dependent protein kinase inhibits the mitogenic action of vascular endothelial growth factor and fibroblast growth factor in capillary endothelial cells by blocking Raf activation. J Cell Biochem 67:353–366

    Article  PubMed  Google Scholar 

  37. Sommers Smith SK, Smith DM (2002) Beta blockade induces apoptosis in cultured capillary endothelial cells. In Vitro Cell Dev Biol Anim 38:298–304

    Article  PubMed  CAS  Google Scholar 

  38. Shi GP, Lindholt JS (2012) Mast cells in abdominal aortic aneurysms. Curr Vasc Pharmacol [Epub ahead of print]

  39. Swedenborg J, Mäyränpää MI, Kovanen PT (2011) Mast cells: important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 31:734–740

    Article  PubMed  CAS  Google Scholar 

  40. Margulis AR (2012) Molecular imaging: love it or lose it. Radiology 264:5

    Article  PubMed  Google Scholar 

  41. Yang X (2007) Nano- and microparticle-based imaging of cardiovascular interventions. Radiology 243:340–347

    Article  PubMed  Google Scholar 

  42. Xu L, Pirollo KF, Tang WH et al (1999) Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 10:2941–2952

    Article  PubMed  CAS  Google Scholar 

  43. Wickline SA, Neubauer AM, Winter P et al (2006) Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 26:435–441

    Article  PubMed  CAS  Google Scholar 

  44. Hawker CJ, Wooley KL (2005) The convergence of synthetic organic and polymer chemistries. Science 309:1200–1205

    Article  PubMed  CAS  Google Scholar 

  45. Blomley MJ, Cooke JC, Unger EC (2001) Microbubble contrast agents: a new era in ultrasound. BMJ 322:1222–1225

    Article  PubMed  CAS  Google Scholar 

  46. Stinaff EA, Scheibner M, Bracker AS et al (2006) Optical signatures of coupled quantum dots. Science 311:636–639

    Article  PubMed  CAS  Google Scholar 

  47. Patil S, Pancholi SS, Agrawal S, Agrawal GP (2004) Surface-modified mesoporous ceramics as delivery vehicle for haemoglobin. Drug Deliv 11:193–199

    Article  PubMed  CAS  Google Scholar 

  48. Radiological Society of North America (2005) Nanoparticles show promise in cancer detection and treatment. RSNA News newsl 15:3–5

    Google Scholar 

  49. Hirsch LR, Gobin AM, Lowery AR et al (2006) Metal nanoshells. Ann Biomed Eng 34:15–22

    Article  PubMed  Google Scholar 

  50. Chen HH, Le Visage C, Qiu B et al (2005) MR imaging of biodegradable polymeric microparticles: a potential method of monitoring local drug delivery. Magn Reson Med 53:614–620

    Article  PubMed  CAS  Google Scholar 

  51. Choudhury RP, Fuster V, Fayad ZA (2004) Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 3:913–925

    Article  PubMed  CAS  Google Scholar 

  52. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  CAS  Google Scholar 

  53. Rubesova E, Berger F, Wendland MF et al (2002) Gd-labeled liposomes for monitoring liposome-encapsulated chemotherapy: quantification of regional uptake in tumor and effect on drug delivery. Acad Radiol 9(Suppl 2):S525–S527

    Article  PubMed  Google Scholar 

  54. Graziadei IW, Sandmueller H, Waldenberger P (2003) Chemoembolization followed by liver transplantation for hepatocellular carcinoma impedes tumor progression while on the waiting list and leads to excellent outcome. Liver Transpl 9:557–563

    Article  PubMed  Google Scholar 

  55. Du X, Yang Y, Le Visage C et al (2003) In vivo US monitoring of catheter-based vascular delivery of gene microspheres in pigs: feasibility. Radiology 228:555–559

    Article  PubMed  Google Scholar 

  56. Kolodgie FD, John M, Khurana C et al (2002) Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 106:1195–1198

    Article  PubMed  CAS  Google Scholar 

  57. Banai S, Chorny M, Gertz SD et al (2005) Locally delivered nanoencapsulated tyrphostin (AGL-2043) reduces neointima formation in balloon- injured rat carotid and stented porcine coronary arteries. Biomaterials 26:451–461

    Article  PubMed  CAS  Google Scholar 

  58. Lanza GM, Wallace KD, Scott MJ et al (1996) A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94:3334–3340 [Published correction appears in Circulation 95:2458]

    Article  PubMed  CAS  Google Scholar 

  59. Morawski AM, Winter PM, Crowder KC et al (2004) Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51:480–486

    Article  PubMed  CAS  Google Scholar 

  60. Lanza GM, Trousil RL, Wallace KD et al (1998) In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J Acoust Soc Am 104:3665–3672

    Article  PubMed  CAS  Google Scholar 

  61. Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3- integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  PubMed  CAS  Google Scholar 

  62. Yla-Herttuala S, Martin JF (2000) Cardiovascular gene therapy. Lancet 355:213–222

    Article  PubMed  CAS  Google Scholar 

  63. Newman CM, Lawrie A, Brisken AF, Cumberland DC (2001) Ultrasound gene therapy: on the road from concept to reality. Echocardiography 18:339–347

    Article  PubMed  CAS  Google Scholar 

  64. Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T (2001) Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 44:45–54

    Article  PubMed  CAS  Google Scholar 

  65. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–646

    Article  PubMed  CAS  Google Scholar 

  66. Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S (1998) Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation 98:290–293

    Article  PubMed  CAS  Google Scholar 

  67. Lawrie A, Brisken AF, Francis SE et al (1999) Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation 99:2617–2620

    Article  PubMed  CAS  Google Scholar 

  68. Amabile PG, Waugh JM, Lewis TN et al (2001) High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 37:1975–1980

    Article  PubMed  CAS  Google Scholar 

  69. Tiukinhoy SD, Mahowald ME, Shively VP et al (2000) Development of echogenic, plasmid-incorporated, tissue-targeted cationic liposomes that can be used for directed gene delivery. Invest Radiol 35:732–738

    Article  PubMed  CAS  Google Scholar 

  70. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  71. Umemura T, Higashi Y (2008) Endothelial progenitor cells: therapeutic target for cardiovascular diseases. J Pharmacol Sci 108:1–6

    Article  PubMed  CAS  Google Scholar 

  72. Werner N, Kosiol S, Schiegl T et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007

    Article  PubMed  CAS  Google Scholar 

  73. Tateishi-Yuyama E, Matsubara H, Murohara T et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone marrow cells: a pilot study and a randomized controlled trial. Lancet 360:427–435

    Article  PubMed  Google Scholar 

  74. Higashi Y, Kimura M, Hara K et al (2004) Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 109:1215–1218

    Article  PubMed  Google Scholar 

  75. Hill JM, Zalos G, Halcox JP et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  76. Umemura T, Higashi Y, Nishioka K et al (2007) Relationship between CD34 + AC133 + CD45 low endothelial progenitor cells and cardiovascular risk factors. Hypertension 50:e130

    Article  Google Scholar 

  77. Masuda H, Kalka C, Takahashi T et al (2007) Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res 101:598–606

    Article  PubMed  CAS  Google Scholar 

  78. Vasa M, Fichtlscherer S, Aicher A et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7

    Article  PubMed  CAS  Google Scholar 

  79. Tepper OM, Galiano RD, Capla JM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786

    Article  PubMed  Google Scholar 

  80. Redondo S, Hristov M, Gumbel D, Tejerina T, Weber C (2007) Biphasic effect of pioglitazone on isolated human endothelial progenitor cells: involvement of peroxisome proliferatoractivated receptor-gamma and transforming growth factor-beta1. Thromb Haemost 97:979–987

    PubMed  CAS  Google Scholar 

  81. Kondo T, Hayashi M, Takeshita K et al (2004) Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 24:1442–1447

    Article  PubMed  CAS  Google Scholar 

  82. Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A (2006) Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis 187:423–432

    Article  PubMed  CAS  Google Scholar 

  83. Hudson R, Carcenac M, Smith K et al (2005) The development and characterisation of porphyrin isothiocyanate–monoclonal antibody conjugates for photoimmunotherapy. Br J Cancer 92:1442–1449

    Article  PubMed  CAS  Google Scholar 

  84. Dummin H, Cernay T, Zimmerman HW (1997) Selective photosensitization of mitochondria in HeLa cells by cationic Zn(II) phthalocyanines with lipophilic side-chains. J Photochem Photobiol 37:219–299

    Article  CAS  Google Scholar 

  85. MacDonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:105–129

    Article  CAS  Google Scholar 

  86. Miller M, Kuntz R, Friedrich S et al (1993) Frequency and consequences of intimal hyperplasia in specimens retrieved by directional atherectomy of native primary coronary artery stenoses and subsequent restenosis. Am J Cardiol 71:652–658

    Article  PubMed  CAS  Google Scholar 

  87. Simons M, Leclerc G, Safian R et al (1993) Relation between activated smooth muscle cells in coronary-artery lesions and restenosis after atherectomy. N Engl J Med 328:608–613

    Article  PubMed  CAS  Google Scholar 

  88. Neumann F, Ott I, Gawaz M et al (1996) Neutrophil and platelet activation at balloon-injured coronary artery plaque in patients undergoing angioplasty. J Am Coll Cardiol 27:819–824

    Article  PubMed  CAS  Google Scholar 

  89. Hanke H, Hassenstein S, Ulmer A et al (1994) Accumulation of macrophages in the arterial vessel wall following experimental balloon angioplasty. Eur Heart J 15:691–698

    PubMed  CAS  Google Scholar 

  90. LaMuraglia G, Adili F, Karp S et al (1997) Photodynamic therapy inactivates extracellular matrix-basic fibroblast growth factor: insights to its effect on the vascular wall. J Vasc Surg 26:294–301

    Article  PubMed  CAS  Google Scholar 

  91. Statius van Eps R, LaMuraglia G (1997) Photodynamic therapy inhibits transforming growth factor beta. J Vasc Surg 25:1044–1052

    Article  PubMed  CAS  Google Scholar 

  92. Dartsch P, Ischinger T, Betz E (1990) Responses of cultured smooth muscle cells from human nonatherosclerotic arteries and primary stenosing lesions after photoradiation: implication for photodynamic therapy of vascular stenosis. J Am Coll Cardiol 15:1545–1550

    Article  PubMed  CAS  Google Scholar 

  93. Dartsch P, Ischinger T, Betz E (1990) Differential effect of photofrin II on growth of human smooth muscle cells from non atherosclerotic arteries and atheromatous plaques in vitro. Atherosclerosis 10:616–624

    CAS  Google Scholar 

  94. Vincent G, Mackie R, Orme E et al (1990) In vivo photosensitizer enhanced laser angioplasty in atherosclerotic Yucatan miniswine. J Clin Laser Med Surg 8:59–61

    PubMed  CAS  Google Scholar 

  95. Mackie RW, Vincent GM, Fox J et al (1991) In vivo canine coronary artery laser irradiation: photodynamic therapy using dihematoporphyrin ether and 632 nm laser. Lasers Surg Med 11:535–544

    Article  PubMed  Google Scholar 

  96. Woodburn K, Fan Q, Kessel D et al (1996) Phototherapy of cancer and atheromatous plaque with texaphyrins. J Clin Laser Med Surg 14:343–348

    PubMed  CAS  Google Scholar 

  97. Ortu P, LaMuraglia G, Roberts G et al (1992) Photodynamic therapy of arteries: a novel approach for treatment of experimental intimal hyperplasia. Circulation 85:1189–1196

    Article  PubMed  CAS  Google Scholar 

  98. Nyamekye I, Anglin S, McEwan J et al (1995) Photodynamic therapy of normal and balloon-injured rat carotid arteries using 5-amino-levulinic acid. Circulation 91:417–425

    Article  PubMed  CAS  Google Scholar 

  99. Gonschior P, Gerheuser F, Fleuchaus M et al (1996) Local photodynamic therapy reduces tissue hyperplasia in an experimental restenosis model. Photochem Photobiol 64:758–763

    Article  PubMed  CAS  Google Scholar 

  100. Vincent G (1994) Photodynamic therapy of atherosclerosis and restenosis: a potentially exciting new treatment method. SPIE 2130:2–10

    Article  Google Scholar 

Download references

Conflict of interest

Dr. Charles Ross Tapping and Dr. Mark Bratby have no potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Tapping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapping, C.R., Bratby, M.J. The Changing Face of Vascular Interventional Radiology: The Future Role of Pharmacotherapies and Molecular Imaging. Cardiovasc Intervent Radiol 36, 904–912 (2013). https://doi.org/10.1007/s00270-013-0621-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-013-0621-3

Keywords

Navigation