Skip to main content
Log in

Nanotechnology and its Relationship to Interventional Radiology. Part I: Imaging

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Nanotechnology refers to the design, creation, and manipulation of structures on the nanometer scale. Interventional radiology stands to benefit greatly from advances in nanotechnology because much of the ongoing research is focused toward novel methods of imaging and delivery of therapy through minimally invasive means. Through the development of new techniques and therapies, nanotechnology has the potential to broaden the horizon of interventional radiology and ensure its continued success. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part I of the article deals with an introduction to some of the basic concepts of nanotechnology and outlines some of the potential imaging applications, concentrating mainly on advances in oncological and vascular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rundback JH, Wright K, McLennan G et al (2003) Current status of interventional radiology research: results of a CIRREF survey and implications for future research strategies. J Vasc Interv Radiol 14:1103–1110

    PubMed  Google Scholar 

  2. Meullner A, Glazer GM, Reiser MF et al (2009) Advancing radiology through informed leadership: summary of the proceedings of the seventh biannual symposium of the international society for strategic studies in radiology (IS3R), 23–25 August 2007. Eur Radiol 19:1827–1836

    Article  Google Scholar 

  3. Millward SF, Cardella JF, Hsiao A (2009) Emerging technologies articles. J Vasc Interv Radiol 20(Suppl 7):S487

    Article  PubMed  Google Scholar 

  4. Goldberg SN, Joseph B, Gerald D et al (2005) Society of Interventional Radiology Interventional Oncology Task Force: interventional oncology research vision statement and critical assessment of the state of research affairs. J Vasc Interv Radiol 16:1287–1294

    PubMed  Google Scholar 

  5. Ratner M, Ratner D (2003) Nanotechnology: a gentle introduction to the next big idea. Prentice Hall, Upper Saddle River

    Google Scholar 

  6. Thrall JH (2004) Nanotechnology and medicine. Radiology 230:315–318

    Article  PubMed  Google Scholar 

  7. Chan WCW (2006) Bionanotechnology progress and advances. Biol Blood Marrow Transplant 12:87–91

    Article  CAS  PubMed  Google Scholar 

  8. Iverson N, Plourde N, Chnari E et al (2008) Convergence of nanotechnology and cardiovascular medicine: progress and emerging prospects. Biodrugs 22:1–10

    Article  CAS  PubMed  Google Scholar 

  9. Freitas RA (2005) What is nanomedicine? Nanomedicine 1:2–9

    CAS  PubMed  Google Scholar 

  10. Nie S, Xing Y, Kim GJ et al (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  CAS  PubMed  Google Scholar 

  11. Luciani A, Wilhelm C, Bruneval P et al (2009) Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver. Eur Radiol 19:1087–1096

    Article  PubMed  Google Scholar 

  12. Provenzale JM, Silva GA (2009) Uses of nanoparticles for central nervous system imaging and therapy. Am J Neuroradiol 30:1293–1301

    Article  CAS  PubMed  Google Scholar 

  13. Zhou J, Leuschner C, Kumar C et al (2006) Sub-cellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials 27:2001–2008

    Article  CAS  PubMed  Google Scholar 

  14. Moore A, Marecos E, Bogdanov A et al (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574

    CAS  PubMed  Google Scholar 

  15. Chertok B, Moffat BA, David AE et al (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumours. Biomaterials 29:487–496

    Article  CAS  PubMed  Google Scholar 

  16. Kresse M, Wagner S, Pfefferer D et al (1998) Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med 40:236–242

    Article  CAS  PubMed  Google Scholar 

  17. Winter PM, Caruthers SD, Kassner A et al (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63:5838–5843

    CAS  PubMed  Google Scholar 

  18. Wyss C, Schaefer SC, Juillerat-Jeanneret L et al (2009) Molecular imaging by micro-CT: specific E-selectin imaging. Eur Radiol 19:2487–2494

    Article  PubMed  Google Scholar 

  19. Harishinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    Article  Google Scholar 

  20. Nishimura H, Tanigawa N, Hiramatsu M et al (2006) Preoperative esophageal cancer staging: magnetic resonance imaging of lymph node with ferumoxtran-10, an ultrasmall superparamagnetic iron oxide. J Am Coll Surg 202:604–611

    Article  PubMed  Google Scholar 

  21. Stadnik TW, Everaert H, Makkat S et al (2006) Breast imaging. Preoperative breast cancer staging: comparison of USPIO-enhanced MR imaging and 18F-fluorodeoxyglucose (FDC) positron emission tomography (PET) imaging for axillary lymph node staging―Initial findings. Eur Radiol 16:2153–2160

    Article  PubMed  Google Scholar 

  22. Michel SC, Keller TM, Fröhlich JM et al (2002) Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 225:527–536

    Article  PubMed  Google Scholar 

  23. Lahaye MJ, Engelen SM, Kessels AG et al (2008) USPIO-enhanced MR imaging for nodal staging in patients with primary rectal cancer: predictive criteria. Radiology 246:804–811

    Article  PubMed  Google Scholar 

  24. Motoyama S, Ishiyama K, Maruyama K et al (2007) Preoperative mapping of lymphatic drainage from the tumor using ferumoxide-enhanced magnetic resonance imaging in clinical submucosal thoracic squamous cell esophageal cancer. Surgery 141:736–747

    Article  PubMed  Google Scholar 

  25. Corot C, Robert P, Idée J et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  CAS  PubMed  Google Scholar 

  26. Thorek DLJ, Chen AK, Czupryna J et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38

    Article  PubMed  Google Scholar 

  27. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  CAS  PubMed  Google Scholar 

  28. Will O, Purkayastha S, Chan C et al (2005) Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. Lancet Oncol 7:52–60

    Article  Google Scholar 

  29. Harishinghani M (2008) Nanoparticle-enhanced MRI: are we there yet? Lancet Oncol 9:814–815

    Article  Google Scholar 

  30. Enochs WS, Harsh G, Hochberg F et al (1999) Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9:228–232

    Article  CAS  PubMed  Google Scholar 

  31. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumour agents Smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  32. Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  PubMed  Google Scholar 

  33. Choi H, Choi SR, Zhou R et al (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumour imaging via folate receptor-targeted delivery. Acad Radiol 11:996–1004

    Article  PubMed  Google Scholar 

  34. Chen TJ, Cheng TH, Hung YC et al (2008) Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J Biomed Mater Res A 87:165–175

    PubMed  Google Scholar 

  35. Wang ZJ, Boddington S, Wendland M et al (2008) MR Imaging of ovarian tumors using folate-receptor-targeted contrast agents. Pediatr Radiol 38:529–537

    Article  CAS  PubMed  Google Scholar 

  36. Högemann-Savellano D, Bos E, Blondet C et al (2003) The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5:495–506

    PubMed  Google Scholar 

  37. Bertini I, Bianchini F, Calorini L et al (2004) Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma. Magn Reson Med 52:669–672

    Article  CAS  PubMed  Google Scholar 

  38. Oyewumi MO, Yokel RA, Jay M et al (2004) Comparison of cell uptake, biodistribution, and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor bearing mice. J Control Release 95:613–626

    Article  CAS  PubMed  Google Scholar 

  39. Rabin O, Perez JM, Grimm J et al (2006) An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122

    Article  CAS  PubMed  Google Scholar 

  40. Libby P (2006) Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 83:456S–460S

    CAS  PubMed  Google Scholar 

  41. Moreno PR, Falk E, Palacios IF et al (1994) Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 90:775–778

    CAS  PubMed  Google Scholar 

  42. Ruehm SG, Corot C, Vogt P et al (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidaemic rabbits. Circulation 103:415–422

    CAS  PubMed  Google Scholar 

  43. Hyafil F, Laissy JP, Mazighi M et al (2006) Ferumoxtran-10-enhanced MRI of the hypercholesterolaemic rabbit aorta: relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol 26:176–181

    Article  CAS  PubMed  Google Scholar 

  44. Kooi ME, Cappendijk VC, Cleutjens KB et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    Article  CAS  PubMed  Google Scholar 

  45. Trivedi RA, U-King-Im JM, Graves MJ et al (2004) Noninvasive imaging of carotid plaque inflammation. Neurology 63:187–188

    CAS  PubMed  Google Scholar 

  46. Trivedi RA, U-King-Im JM, Graves MJ et al (2004) In vivo detection of macrophages in human carotid atheroma: temporal dependance of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35:1631–1635

    Article  PubMed  Google Scholar 

  47. Tang TY, Howarth SPS, Miller SR et al (2009) The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study: evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 53:2039–2050

    Article  CAS  PubMed  Google Scholar 

  48. Tsourkas A, Shinde-Patil VR, Kelly KA et al (2005) In vivo imaging of activated endothelium using an Anti-VCAM-1 magneto optical probe. Bioconjug Chem 16:576–581

    Article  CAS  PubMed  Google Scholar 

  49. Kelly KA, Allport JR, Tsourkas A et al (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96:327–336

    Article  CAS  PubMed  Google Scholar 

  50. Moreno PR, Purushothaman KR, Fuster V et al (2004) Plaque neovascularisation is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 110:2032–2038

    Article  PubMed  Google Scholar 

  51. Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  CAS  PubMed  Google Scholar 

  52. Winter PM, Neubauer AM, Caruthers SD et al (2006) Endothelial αvβ3-integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109

    Article  CAS  PubMed  Google Scholar 

  53. Lanza GM, Winter PM, Yu X et al (2002) Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106:2842–2847

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Power, S., Slattery, M.M. & Lee, M.J. Nanotechnology and its Relationship to Interventional Radiology. Part I: Imaging. Cardiovasc Intervent Radiol 34, 221–226 (2011). https://doi.org/10.1007/s00270-010-9961-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-010-9961-4

Keywords

Navigation