Skip to main content

Advertisement

Log in

Simulation: Moving from Technology Challenge to Human Factors Success

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dawson S (2006) Procedural simulation: a primer. Radiology 241:17–25

    Article  PubMed  Google Scholar 

  2. Curet MJ (2008) Resident work hour restrictions: where are we now? J Am Coll Surg 207:767–776

    Article  PubMed  Google Scholar 

  3. Salim A, Teixeira PGR, Chan L et al (2007) Impact of the 80 hour workweek on patient care at a level 1 trauma centre. Arch Surg 142:708–714

    Article  PubMed  Google Scholar 

  4. Räder SB, Jørgensen E, Bech B (in press) Use of performance curves in estimating number of procedures required to achieve proficiency in coronary angiography. Catheter Cardiovasc Interv

  5. Bridges M, Diamond DL (1999) The financial impact of training surgical residents in the operating room. Am J Surg 177:28–32

    Article  PubMed  CAS  Google Scholar 

  6. Crofts TJ, Griffiths JM, Sharma S et al (1997) Surgical training: an objective assessment of recent changes for a single health board. BMJ 314:891–895

    Article  PubMed  CAS  Google Scholar 

  7. Gallagher AG, Cates CU (2004) Approval of virtual reality training for carotid stenting; what this means for procedural-based medicine. JAMA 292:3025–3026

    Article  Google Scholar 

  8. Neequaye SK, Aggarwal R, Van Herzeele I et al (2007) Endovascular skills training and assessment. J Vasc Surg 46:1055–1064

    Article  PubMed  Google Scholar 

  9. Kneebone R, Bello F (2008) Surgical simulation. In: Riley RH (ed) Manual of simulation in healthcare. Oxford University Press, Oxford, pp 1–352

    Google Scholar 

  10. Rock BG, Leonard AP, Freeman SJ (2010) A training simulator for ultrasound-guided percutaneous nephrostomy insertion. Br J Radiol 83:612–614

    Article  PubMed  CAS  Google Scholar 

  11. Mendice. Vascular simulator model. http://www.mentice.com/

  12. Simbionix. Vascular simulator model. http://www.simbionix.com

  13. Luboz V, Hughes C, Gould D et al (2009) Real-time Seldinger technique simulation in complex vascular models. Int J Comp Assis Radiol Surg 4:589

    Article  Google Scholar 

  14. Zhu Y, Magee D, Ratnalingam R, Kessel D (2004) A physics based method for combining multiple anatomy models with application to medical simulation. In: Westwood JD, Randy S, Haluck MD et al (eds) Medicine meets virtual reality 12: building a better you: the next tools for medical education, diagnosis, and care. Studies in health technology and informatics, vol 98. IOS Press, Amsterdam, pp 465–467

    Google Scholar 

  15. Willaert WI, Aggarwal R, Van Herzeele I et al (2011) Patient-specific endovascular simulation influences interventionalists performing carotid artery stenting procedures. Eur J Vasc Endovasc Surg 41:492–500

    Article  PubMed  CAS  Google Scholar 

  16. McGaghie WC, Issenberg SB, Petrusa ER et al (2010) A critical review of simulation-based medical education research: 2003–2009. Med Educ 44:50–63

    Article  PubMed  Google Scholar 

  17. Marriott J, Purdie H, Crossley J et al (2011) Evaluation of procedure-based assessment for assessing trainees’ skills in the operating theatre. Br J Surg 98:450–457

    Article  PubMed  CAS  Google Scholar 

  18. Seymour NE, Gallagher AG, Roman SA et al (2002) Virtual reality training improves operating room performance: results of a randomised, double-blinded study. Yale University and Queen’s University, Belfast. Ann Surg 236:458–463

    Article  PubMed  Google Scholar 

  19. Or-zone. Framework for proficiency. http://www.orzone.com/front

  20. Berry M, Lystig T, Reznick R, Lonn L (2006) Assessment of a virtual interventional simulator trainer. J Endovasc Ther 13:237–243

    Article  PubMed  Google Scholar 

  21. Bech B, Lonn L, Falkenberg M et al. (in press) Construct validity and reliability of structured assessment of endovascular expertise in a simulated setting. Eur J Vasc Endovasc Surg

  22. Gould DA, Kessel DO, Healey AE et al (2006) Simulators in catheter based interventional radiology: training or computer games? J Clin Radiol 61:556–561

    Article  CAS  Google Scholar 

  23. Gould DA, Reekers JA, Kessel DO et al (2006) Simulations devices in interventional radiology: validation pending. J Vasc Interv Radiol 17(2 pt 1):215–216

    Article  PubMed  Google Scholar 

  24. Johnson SJ, Hunt CM, Woolnough HM et al. (in press) Virtual reality, ultrasound-guided liver biopsy simulator: development and performance discrimination. Br J Radiol

  25. Health and Safety Executive. Introduction to human factors. http://www.hse.gov.uk/humanfactors/introduction.htm

  26. Cardiovascular and Interventional Radiological Society of Europe. Curriculum insertion sites. http://www.cirse.org/files/File/Curricular_insertion_sites_for_simulation.pdf

  27. Cardiovascular and Interventional Radiology Society of Europe. Establishing the role of simulation-based training in existing interventional radiology curricula. http://www.cirse.org/files/File/Curricular_insertion_sites_for_simulation.pdf

  28. Johnson SJ, Healey AE, Evans JC et al (2006) Physical and cognitive task analysis in interventional radiology. J Clin Radiol 61:97–103

    Article  CAS  Google Scholar 

  29. Bech B, Lonn L, Schroeder TV et al (2010) Capturing the essence of developing endovascular expertise for the construction of a global assessment instrument. Eur J Vasc Endovasc Surg 40:292–302

    Article  PubMed  CAS  Google Scholar 

  30. Militello LG, Hutton RJB (1998) Applied cognitive task analysis (ACTA): a practitioner’s toolkit for understanding cognitive task demands. Ergonomics 41:1618–1641

    Article  PubMed  CAS  Google Scholar 

  31. Kirwan B, Ainsworth LK (1992) A guide to task analysis. Taylor and Francis, Basingstoke

    Google Scholar 

  32. Grunwald T, Clark D, Fisher SS et al (2004) Using cognitive task analysis to facilitate collaboration in development of simulators to accelerate surgical training. In: Westwood JD, Randy S, Haluck MD et al (eds) Medicine meets virtual reality 12: building a better you: the next tools for medical education, diagnosis, and care. studies in health technology and informatics, vol 98. IOS Press, Amsterdam, pp 114–120

    Google Scholar 

  33. Velmahos GC, Toutouzas MD, Sillin LF et al (2004) Cognitive task analysis for teaching technical skills in an inanimate surgical skills laboratory. Am J Surg 187:114–119

    Article  PubMed  Google Scholar 

  34. Reynolds R, Brannick M (2002) Thinking about work/thinking at work: cognitive task analysis. In Tett RP, Hogan JC (eds) Recent developments in cognitive and personality approaches to job analysis: proceedings of the 17th annual conference of the society for industrial and organizational psychology, Toronto, Canada. http://luna.cas.usf.edu/~mbrannic/files/biog/CTASIOP_02.htm

  35. Schraagen JM, Chipman SF, Shalin VL (2000) Introduction to cognitive task analysis. In: Schraagen JM, Chipman SF, Shalin VL (eds) cognitive task analysis. Lawrence Erlbaum Associates, Mahwah, NJ

    Google Scholar 

  36. Clark RE, Estes F (1996) Cognitive task analysis for training. Int J Educ Res 25:403–417

    Article  Google Scholar 

  37. Means B, Gott S (1988) Cognitive task analysis as a basis for tutor development: articulating abstract knowledge representations. In: Psotka J, Massey LD, Mutter SA (eds) Intelligent tutoring systems: lessons learned. Lawrence Erlbaum, Hillsdale, NJ, pp 35–58

    Google Scholar 

  38. Berry M, Hellstrom M, Gothlin J et al (2008) Endovascular training with animals versus virtual reality systems: an economic analysis. J Vasc Interv Radiol 19(2 pt 1):233–238

    Article  PubMed  Google Scholar 

  39. Shavelson RJ, Webb NM (1991) Generalizability theory: a primer. Sage, Newbury Park, CA, pp 1–14

    Google Scholar 

  40. Norman G, Eva K (2008) Quantitative research methods in medical education.x ASME, Edinburgh

    Google Scholar 

  41. Luboz V, Zhai J, Odetoyinbo T et al (2011) Guidewire and catheter behavioural simulation. In: Westwood JD, Westwood SW, Felländer-Tsai L et al (eds) Medicine meets virtual reality 18: NextMed. Studies in health technology and informatics, vol 163. IOS Press, Amsterdam, pp 317–323

    Google Scholar 

  42. Song Y, Luboz V, Din N et al (2011) Segmentation of 3D vasculatures for interventional radiology simulation. In: Westwood JD, Westwood SW, Felländer-Tsai L et al (eds) Medicine meets virtual reality 18: NextMed. Studies in health technology and informatics, vol 163. IOS Press, Amsterdam, pp 599–605

    Google Scholar 

  43. Coles TR, John NW, Sofia G et al (2011) Modification of commercial force feedback hardware for needle insertion simulation. In: Westwood JD, Westwood SW, Felländer-Tsai L et al (eds) Medicine meets virtual reality 18: NextMed. Studies in health technology and informatics, vol 163. IOS Press, Amsterdam, pp 135–137

    Google Scholar 

  44. Vidal F, Villard PF, Holbrey R et al (2009) Developing an immersive ultrasound guided needle puncture simulator. In: Westwood JD, Westwood SW, Haluck RS et al (eds) Medicine meets virtual reality 17: NextMed: design for the well being. Studies in health technology and informatics, vol 142. IOS Press, Amsterdam, p 398

    Google Scholar 

  45. Simone C, Okamura A (2002) Haptic modeling of needle insertion for robot-assisted percutaneous therapy. In: Proceedings of the IEEE international conference on robotics and automation, pp 2085–2091. https://haptics.lcsr.jhu.edu/wiki/images/7/75/Icra02-simone.pdf

  46. DiMaio SP, Salcudean SE (2002) Simulated interactive needle insertion. In: Proceedings of the 10th symposium on haptic interfaces for virtual environments and teleoperator systems, IEEE virtual reality. IEEE, Piscataway, NJ, pp 344–351

  47. Konofagou EE, Ottensmeyer M, Agabian S et al (2004) Estimating localized oscillatory tissue motion for assessment of the underlying mechanical modulus. Ultrasonics 42:951–956

    Article  PubMed  CAS  Google Scholar 

  48. Hays RT, Jacobs JW, Prince C et al (1992) Flight simulator training effectiveness: a meta-analysis. Mil Psychol 4:63–74

    Article  Google Scholar 

  49. Kassab E, Tun JK, Arora S et al (in press) “Blowing up the barriers” in surgical training: exploring and validating the concept of distributed simulation. Ann Surg

  50. Beard J, Rowley D, Bussey M et al (2009) Workplace-based assessment: assessing technical skill throughout the continuum of surgical training. ANZ J Surg 79:148–153

    Article  PubMed  Google Scholar 

  51. Saks AM (2002) So what is a good transfer of training estimate? A reply to Fitzpatrick. Indus Org Psychol 39:29–30

    Google Scholar 

  52. Kneebone RL, Nestel D, Vincent C et al (2007) Complexity, risk and simulation in learning procedural skills. Med Educ 41:808–814

    Article  PubMed  CAS  Google Scholar 

  53. Baldwin TT, Ford JK (1988) Transfer of training: a review and directions for future research. Personnel Psychol 41:63–105

    Article  Google Scholar 

  54. Larsen CR, Soerensen JL, Grantcharov TO et al (2009) Effect of virtual reality training on laparoscopic surgery: randomised controlled trial. BMJ 338:b1802

    Article  PubMed  Google Scholar 

  55. Sedlack R, Kolars J (2004) Computer simulator training enhances the competency of gastroenterology fellows at colonoscopy: results of a pilot study. Am J Gastroenterol 99:33–37

    Article  PubMed  Google Scholar 

  56. Schout BM, Ananias HJ, Bemelmans BL et al (2010) Transfer of cysto-urethroscopy skills from a virtual-reality simulator to the operating room: a randomized controlled trial. BJU Int 106:226–231

    Article  PubMed  Google Scholar 

  57. Rowe R, Cohen R (2002) An evaluation of a virtual reality airway simulator. Anesth Analg 95:62–66

    Article  PubMed  Google Scholar 

  58. Chaer RA, Derubertis BG, Lin SC et al (2006) Simulation improves resident performance in catheter-based intervention: results of a randomized, controlled study. Ann Surg 244:343–352

    PubMed  Google Scholar 

  59. Ericsson KA (2008) Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med 15:988–994

    Article  PubMed  Google Scholar 

  60. Pandey VA, Wolfe JH, Black SA et al (2008) Self-assessment of technical skill in surgery: the need for expert feedback. Ann R Coll Surg Engl 90:286–290

    Article  PubMed  CAS  Google Scholar 

  61. Van Herzeele I, Aggarwal R, Malik I et al (2009) Validation of video-based skill assessment in carotid artery stenting. Eur J Vasc Endovasc Surg 38:1–9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Andrew England, School of Health Sciences, University of Liverpool, for his valuable comments and suggestions. D. G., S. J., F. B., and N. C. have received grant funding for simulator development from the Health Technology Devices Programme and the Engineering and Physical Sciences Research Council, UK.

Conflict of interest

L. L. is a consultant for Mentice and ORzone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek A. Gould.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, D.A., Chalmers, N., Johnson, S.J. et al. Simulation: Moving from Technology Challenge to Human Factors Success. Cardiovasc Intervent Radiol 35, 445–453 (2012). https://doi.org/10.1007/s00270-011-0266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-011-0266-z

Keywords

Navigation