Skip to main content

Advertisement

Log in

Nanotechnology and its Relationship to Interventional Radiology. Part II: Drug Delivery, Thermotherapy, and Vascular Intervention

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Nanotechnology can be defined as the design, creation, and manipulation of structures on the nanometer scale. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part 2 of the article concentrates on drug delivery, thermotherapy, and vascular intervention. In oncology, advances in drug delivery allow for improved efficacy, decreased toxicity, and greater potential for targeted therapy. Magnetic nanoparticles show potential for use in thermotherapy treatments of various tumours, and the effectiveness of radiofrequency ablation can be enhanced with nanoparticle chemotherapy agents. In vascular intervention, much work is focused on prevention of restenosis through developments in stent technology and systems for localised drug delivery to vessel walls. Further areas of interest include applications for thrombolysis and haemostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26:57–64

    Article  PubMed  CAS  Google Scholar 

  2. Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459

    Article  PubMed  CAS  Google Scholar 

  3. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  PubMed  CAS  Google Scholar 

  4. Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35:61–67

    Article  PubMed  CAS  Google Scholar 

  5. Shukla R, Thomas TP, Peters JL et al (2006) HER2 specific tumor targeting with dendrimer conjugated Anti-HER2 mAb. Bioconjug Chem 17:1109–1115

    Article  PubMed  CAS  Google Scholar 

  6. Uwatoku T, Shimokawa H, Abe K et al (2003) Application of nanoparticle technology for the prevention of restenosis after balloon injury in rats. Circ Res 92:e62–e69

    Article  PubMed  CAS  Google Scholar 

  7. Jin C, Bai L, Wu H et al (2007) Radiosensitization of paclitaxel, etanidazole, and paclitaxel + etanidazole nanoparticles on hypoxic human tumour cells in vitro. Biomaterials 28:3724–3730

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Li R, Qian X et al (2008) Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur J Pharm Biopharm 70:726–734

    Article  PubMed  CAS  Google Scholar 

  9. Krishnadas A, Rubinstein I, Onyüksel H (2003) Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm Res 20:297–302

    Article  PubMed  CAS  Google Scholar 

  10. Thrall JH (2004) Nanotechnology and medicine. Radiology 230:315–318

    Article  PubMed  Google Scholar 

  11. Gordon R, Losic D, Tiffany MA et al (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127

    Article  PubMed  CAS  Google Scholar 

  12. Chertok B, Moffat BA, David AE et al (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumours. Biomaterials 29:487–496

    Article  PubMed  CAS  Google Scholar 

  13. Son SJ, Reichel J, He B et al (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127:7316–7317

    Article  PubMed  CAS  Google Scholar 

  14. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    Article  PubMed  CAS  Google Scholar 

  15. Alexis F, Rhee J, Richie JP et al (2008) New frontiers in nanotechnology for cancer treatment. Urol Oncol 26:74–85

    Article  PubMed  CAS  Google Scholar 

  16. Heath JR, Davis ME (2008) Nanotechnology and cancer. Annu Rev Med 59:251–265

    Article  PubMed  CAS  Google Scholar 

  17. Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450

    Article  PubMed  CAS  Google Scholar 

  18. Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Article  PubMed  CAS  Google Scholar 

  19. Pope-Harmon A, Cheng MM, Robertson F et al (2007) Biomedical nanotechnology for cancer. Med Clin North Am 91:899–927

    Article  CAS  Google Scholar 

  20. Nie S, Y. X, Kim GJ, et al. (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

  21. Koo YL, Reddy GR, Bhojani M et al (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 58:1556–1577

    Article  PubMed  CAS  Google Scholar 

  22. Kim KY (2007) Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine 3:103–110

    PubMed  CAS  Google Scholar 

  23. Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 1:193–212

    PubMed  CAS  Google Scholar 

  24. Harries M, Ellis P, Harper P (2005) Nanoparticle albumin-bound paclitaxel for metastatic breast cancer. J Clin Oncol 23:7768–7771

    Article  PubMed  CAS  Google Scholar 

  25. Damascelli B, Patelli G, Tichá V et al (2007) Feasibility and efficacy of percutaneous transcatheter intrarterial chemotherapy with paclitaxel in albumin nanoparticles for advanced squamous-cell carcinoma of the oral cavity, oropharynx, and hypopharynx. J Vasc Interv Radiol 18:1395–1403

    Article  PubMed  Google Scholar 

  26. Na K, Bae YH (2002) Self-Assembled hydrogel nanoparticles responsive to tumor extracellular ph from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro. Pharm Res 19:681–688

    Article  PubMed  CAS  Google Scholar 

  27. Reddy GR, Bhojani MS, McConville P et al (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumours. Clin Cancer Res 12:6677–6686

    Article  PubMed  CAS  Google Scholar 

  28. Soma CE, Dubernet C, Bentolila D et al (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21:1–7

    Article  PubMed  CAS  Google Scholar 

  29. Nakano K, Egashira K, Masuda S et al (2009) Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries. JACC: Cardiovasc Interv 2:277–283

    Article  Google Scholar 

  30. Matsumura Y, Maeda H (1986) A New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accummulation of proteins and the antitumour agents Smancs. Cancer Res 46:6387–6392

    PubMed  CAS  Google Scholar 

  31. Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  PubMed  CAS  Google Scholar 

  32. Mu L, Feng SS (2003) A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86:33–48

    Article  PubMed  CAS  Google Scholar 

  33. Damascelli B, Cantù G, Mattavelli F et al (2001) Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): phase II study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity. Cancer 92:2592–2602

    Article  PubMed  CAS  Google Scholar 

  34. Zhou J, Leuschner C, Kumar C et al (2006) Sub-cellular accummulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials 27:2001–2008

    Article  PubMed  CAS  Google Scholar 

  35. Thorek DLJ, Chen AK, Czupryna J et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38

    Article  PubMed  Google Scholar 

  36. Moore A, Marecos E, Bogdanov A et al (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574

    PubMed  CAS  Google Scholar 

  37. Barraud L, Merle P, Soma E et al (2005) Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol 42:736–743

    Article  PubMed  CAS  Google Scholar 

  38. Storm G, Belliot SO, Daemen T et al (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48

    Article  CAS  Google Scholar 

  39. Gabizon A, Catane R, Uziely B et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–992

    PubMed  CAS  Google Scholar 

  40. Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112:335–340

    Article  PubMed  CAS  Google Scholar 

  41. Leamon CP, Reddy JA (2004) Folate-targeted chemotherapy. Adv Drug Deliv Rev 56:1127–1141

    Article  PubMed  CAS  Google Scholar 

  42. Tokumitsu H, Hiratsuka J, Sakurai Y et al (2000) Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor. Cancer Lett 150:177–182

    Article  PubMed  CAS  Google Scholar 

  43. Lesinski GB, Sharma S, Varker KA et al (2005) Release of biologically functional interferon-alpha from a nanochannel delivery system. Biomed Microdevices 7:71–79

    Article  PubMed  CAS  Google Scholar 

  44. Damascelli B, Patelli GL, Lanocita R et al (2003) A novel intraarterial chemotherapy using paclitaxel in albumin nanoparticles to treat advanced squamous cell carcinoma of the tongue: preliminary findings. AJR Am J Roentgenol 181:253–260

    PubMed  Google Scholar 

  45. Nobuto H, Sugita T, Kubo T et al (2004) Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109:627–635

    Article  PubMed  CAS  Google Scholar 

  46. Lemke AJ, Senfft von Pilsach MI, Lübbe A et al (2004) MRI after magnetic drug targeting in patients with advanced solid malignant tumours. Eur Radiol 14:1949–1955

    Article  PubMed  Google Scholar 

  47. Avilés MO, Ebner AD, Ritter JA (2009) In vitro study of magnetic particle seeding for implant-assisted magnetic drug targeting: seed and magnetic drug carrier particle capture. J Magn Magn Mater 321:1586–1590

    Article  CAS  Google Scholar 

  48. Luciani A, Wilhelm C, Bruneval P et al (2009) Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver. Eur Radiol 19:1087–1096

    Article  PubMed  Google Scholar 

  49. Mahmood U (2004) Can MR imaging be used to track delivery of intravascularly administered stem cells. Radiology 233:625–626

    Article  PubMed  Google Scholar 

  50. Dick AJ, Guttman MA, Raman VK et al (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 108:2899–2904

    Article  PubMed  Google Scholar 

  51. Bulte JW, Douglas T, Witwer B et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  PubMed  CAS  Google Scholar 

  52. Rice HE, Hsu EW, Sheng H et al (2007) Superparamagnetic iron oxide labeling and transplantation of adipose-derived stem cells in middle cerebral artery occlusion-injured mice. AJR Am J Roentgenol 188:1101–1108

    Article  PubMed  Google Scholar 

  53. Bos C, Delmas Y, Desmoulière A et al (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789

    Article  PubMed  Google Scholar 

  54. Husseini GA, Pitt WG (2008) Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1137–1152

    Article  PubMed  CAS  Google Scholar 

  55. Ferrara KW (2008) Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev 60:1097–1102

    Article  PubMed  CAS  Google Scholar 

  56. Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106

    Article  PubMed  CAS  Google Scholar 

  57. Dayton PA, Zhao S, Bloch SH et al (2006) Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy. Mol Imaging 5:160–174

    PubMed  Google Scholar 

  58. Nelson JL, Roeder BL, Carmen JC et al (2002) Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 62:7280–7283

    PubMed  CAS  Google Scholar 

  59. Myhr G, Moan J (2006) Synergistic and tumour selective effects of chemotherapy and ultrasound treatment. Cancer Lett 232:206–213

    Article  PubMed  CAS  Google Scholar 

  60. Gao Z, Fain HD, Rapoport N (2005) Controlled and targeted tumor chemotherapy by micellar-encapusulated drug and ultrasound. J Control Release 102:203–222

    Article  PubMed  CAS  Google Scholar 

  61. Pison U, Welte T, Giersig M et al (2006) Nanomedicine for respiratory disease. Eur J Pharmacol 533(1–3):341–350

    Article  PubMed  CAS  Google Scholar 

  62. Azarmi S, Roa WH, Lobenberg R (2008) Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 60:863–875

    Article  PubMed  CAS  Google Scholar 

  63. Marsh JN, Senpan A, Hu G et al (2007) Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine 2:533–543

    Article  PubMed  CAS  Google Scholar 

  64. Lanza G, Winter P, Cyrus T et al (2006) Nanomedicine opportunities in cardiology. Ann N Y Acad Sci 1080:451–465

    Article  PubMed  CAS  Google Scholar 

  65. Gerwin N, Hops C, Lucke A (2006) Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev 58:226–242

    Article  PubMed  CAS  Google Scholar 

  66. Mountziaris PM, Kramer PR, Mikos AG (2009) Emerging intra-articular drug delivery systems for the temporomandibular joint. Methods 47:134–140

    Article  PubMed  CAS  Google Scholar 

  67. Horisawa E, Hirota T, Kawazoe S et al (2002) Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res 19:403–410

    Article  PubMed  CAS  Google Scholar 

  68. Raman JD, Hall DW, Cadeddu JA (2009) Renal ablative therapy: radiofrequency ablation and cryoablation. J Surg Oncol 100:639–644

    Article  PubMed  Google Scholar 

  69. O’Neal DP, Hirsch LR, Halas NJ et al (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Article  PubMed  CAS  Google Scholar 

  70. Hildebrandt B, Wust P, Ahlers O et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56

    Article  PubMed  Google Scholar 

  71. Hilger I, Hergt R, Kaiser WA (2005) Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proc Nanobiotechnol 152:33–39

    Article  PubMed  CAS  Google Scholar 

  72. Johannsen M, Gneveckow U, Taymoorian K et al (2007) Thermal therapy of prostate cancer using magnetic nanoparticles. Actas Urol Esp 31:660–667

    Article  PubMed  Google Scholar 

  73. Takamatsu S, Matsui O, Gabata T et al (2008) Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materials: feasibility study in rabbits. Radiat Med 26:179–187

    Article  PubMed  CAS  Google Scholar 

  74. Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three dimensional temperature distribution. Eur Urol 52:1653–1661

    Article  PubMed  Google Scholar 

  75. Hilger I, Andrä W, Hergt R et al (2001) Electromagnetic heating of breast tumours in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575

    PubMed  CAS  Google Scholar 

  76. Ahmed M, Monsky WE, Girnun G et al (2003) Radiofrequency thermal ablation sharply increases intratumoural liposomal doxorubicin accummulation and tumor coagulation. Cancer Res 63:6327–6333

    PubMed  CAS  Google Scholar 

  77. Goldberg SN, Girnan GD, Lukyanov AN et al (2002) Percutaneous tumor ablation: increased necrosis with combined radiofrequency ablation and intravenous liposomal doxorubicin in a rat breast tumour model. Radiology 222:797–804

    Article  PubMed  Google Scholar 

  78. Goldberg SN, Kamel IR, Kruskal JB et al (2002) Radiofrequency ablation of hepatic tumours: increased tumour destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol 179:93–101

    PubMed  Google Scholar 

  79. Ahmed M, Liu Z, Lukyanov AN et al (2005) Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accummulation and coagulation in multiple tissues and tumor types in animals. Radiology 235:469–477

    Article  PubMed  Google Scholar 

  80. Ahmed M, Lukyanov AN, Torchilin V et al (2005) Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. J Vasc Interv Radiol 16:1365–1371

    PubMed  Google Scholar 

  81. Kong DF, Goldschmidt-Clermont PJ (2005) Tiny solutions for giant cardiac problems. Trends Cardiovasc Med 15:207–211

    Article  PubMed  Google Scholar 

  82. Stone GW, Ellis SG, Cox DA et al (2004) A polymer-based paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350:221–231

    Article  PubMed  CAS  Google Scholar 

  83. Babapulle MN, Joseph L, Bélisle P et al (2004) A hierarchical bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet 364(9434):583–591

    Article  PubMed  CAS  Google Scholar 

  84. Stone GW, Ellis SG, Cox DA et al (2004) One-year clinical results with the slow-release, polymer based, paclitaxel-eluting TAXUS stent. The TAXUS-IV trial. Circulation 109:1942–1947

    Article  PubMed  CAS  Google Scholar 

  85. Lansky AJ, Costa RA, Mintz GS et al (2004) Non-polymer-based paclitaxel-coated coronary stents for the treatment of pateints with de novo coronary lesions. Angiographic follow-up of the DELIVER clinical trial. Circulation 109:1948–1954

    Article  PubMed  CAS  Google Scholar 

  86. Virmani R, Liistro F, Stankovic G et al (2002) Mechanism of late in-stent restenosis after implantation of a paclitaxel derivative-eluting polymer stent system in humans. Circulation 106:2649–2651

    Article  PubMed  CAS  Google Scholar 

  87. Laskey WK, Yancy CW, Maisel WH (2007) Thrombosis in coronary drug-eluting stents: report from the meeting of the Circulatory System Medical Devices Advisory Panel of the Food and Drug Administration Center for Devices and Radiologic Health, December 7–8, 2006. Circulation 115:2352–2357

    Article  PubMed  Google Scholar 

  88. Caves JM, Chaikof EL (2006) The evolving impact of microfabrication and nanotechnology on stent design. J Vasc Surg 44:1363–1368

    Article  PubMed  Google Scholar 

  89. Finkelstein A, McClean D, Kar S et al (2003) Local drug delivery via a coronary stent with programmable release pharmacokinetics. Circulation 107:777–784

    Article  PubMed  Google Scholar 

  90. Reed ML, Wu C, Kneller J et al (1998) Micromechanical devices for intravascular drug delivery. J Pharm Sci 87:1387–1394

    Article  PubMed  CAS  Google Scholar 

  91. Bhargava B, Reddy NK, Karthikeyan G et al (2006) A novel paclitaxel-eluting porous carbon-carbon nanoparticle coated, nonpolymeric cobalt-chromium stent: evaluation in a porcine model. Catheter Cardiovasc Interv 67:698–702

    Article  PubMed  Google Scholar 

  92. Guzman LA, Labhasetwar V, Song C et al (1996) Local intraluminal infusion of biodegradable polymeric nanoparticles: a novel approach for prolonged drug delivery after balloon angioplasty. Circulation 94:1441–1448

    PubMed  CAS  Google Scholar 

  93. Kolodgie FD, John M, Khurana C et al (2002) Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 106:1118–1195

    Article  CAS  Google Scholar 

  94. Labhasetwar V, Song C, Humphrey W et al (1998) Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci 87:1229–1234

    Article  PubMed  CAS  Google Scholar 

  95. Lanza GM, Winter PM, Yu X et al (2002) Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106:2842–2847

    Article  PubMed  CAS  Google Scholar 

  96. Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  PubMed  CAS  Google Scholar 

  97. Winter PM, Neubauer AM, Caruthers SD et al (2006) Endothelial αvβ3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109

    Article  PubMed  CAS  Google Scholar 

  98. Sprague EA, Pomeranz ML, Odess I et al (2008) Surface material, surface treatment and nanotechnology in cardiovascular stent development. EuroIntervention 4(Suppl C):C60–C62

    PubMed  Google Scholar 

  99. Lu J, Rao MP, MacDonald NC et al (2008) Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater 4:192–201

    Article  PubMed  CAS  Google Scholar 

  100. Kubo K, Tsukimura N, Iwasa F et al (2009) Cellular behaviour on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 30:5319–5329

    Article  PubMed  CAS  Google Scholar 

  101. Khang D, Lu J, Yao C et al (2008) The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29:970–983

    Article  PubMed  CAS  Google Scholar 

  102. Miller DC, Haberstroh KM, Webster TJ (2005) Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films. J Biomed Mater Res A 73A:476–484

    Article  CAS  Google Scholar 

  103. Miller DC, Thapa A, Haberstroh KM et al (2004) Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials 25:53–61

    Article  PubMed  CAS  Google Scholar 

  104. Liu H, Webster TJ (2006) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28:354–369

    Article  PubMed  CAS  Google Scholar 

  105. Aoki J, Serruys PW, van Beusekom H et al (2005) Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol 45:1574–1579

    Article  PubMed  CAS  Google Scholar 

  106. Rotmans JI, Heyligers JM, Verhagen HJ et al (2005) In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 112:12–18

    Article  PubMed  CAS  Google Scholar 

  107. Lo CT, Van Tassel PR, Saltzman WM (2009) Simultaneous release of multiple molecules from poly(lactide-co-glycolide) nanoparticles assembled onto medical devices. Biomaterials 30:4889–4897

    Article  PubMed  CAS  Google Scholar 

  108. Krishna OD, Kim K, Byun Y (2005) Covalently grafted phospholipid monolayer on silicone catheter surface for reduction in platelet adhesion. Biomaterials 26:7115–7123

    Article  PubMed  CAS  Google Scholar 

  109. Ellis–Behnke RG, Liang Y, Tay DK et al (2006) Nano hemostat solution: immediate hemostasis at the nanoscale. Nanomedicine 2:207–215

    PubMed  Google Scholar 

  110. Holland CK, Vaidya SS, Datta S et al (2008) Ultrasound-enhanced tissue plasminogen activator thrombolysis in an in vitro porcine clot model. Thromb Res 121:663–673

    Article  PubMed  CAS  Google Scholar 

  111. Wissgott C, Richter A, Kamusella P et al (2007) Treatment of critcal limb ischaemia using ultrasound enhanced thrombolysis (PARES Trial): final results. J Endovasc Ther 14:433–438

    Article  Google Scholar 

  112. Parikh S, Motarjeme A, McNamara T et al (2008) Ultrasound-accelerated thrombolysis for the treatment of deep venous thrombosis: initial clinical experience. J Vasc Interv Radiol 19:521–528

    Article  PubMed  Google Scholar 

  113. Alexandrov AV, Molina CA, Grotta JC et al (2004) Ultrasound-enhanced systemic thrombolysis for acute ischaemic stroke. N Engl J Med 351(21):2170–2178

    Article  PubMed  CAS  Google Scholar 

  114. Molina CA, Ribo M, Rubiera M et al (2006) Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 37:425–429

    Article  PubMed  CAS  Google Scholar 

  115. Culp WC, Porter TR, McCowan TC et al (2003) Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts in dogs. J Vasc Interv Radiol 14:343–347

    PubMed  Google Scholar 

  116. Laing ST, McPherson DD (2009) Cardiovascular therapeutic uses of targeted ultrasound contrast agents. Cardiovasc Res 83:626–635

    Article  PubMed  CAS  Google Scholar 

  117. Tiukinhoy-Laing SD, Buchanan K, Parikh D et al (2007) Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J Drug Target 15:109–114

    Article  PubMed  CAS  Google Scholar 

  118. Tiukinhoy-Laing SD, Huang S, Klegerman M et al (2007) Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res 119:777–784

    Article  PubMed  CAS  Google Scholar 

  119. Thomas K, Aguar P, Kawasaki H et al (2006) Research strategies for safety evaulation of nanomaterials, part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92:23–32

    Article  PubMed  CAS  Google Scholar 

  120. Borm PJA, Robbins D, Haubold S et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    Article  PubMed  CAS  Google Scholar 

  121. Curtis J, Greenberg M, Kester J et al (2006) Nanotechnology and nanotoxicology: a primer for clinicians. Toxicol Rev 25:245–260

    Article  PubMed  CAS  Google Scholar 

  122. Lam CW, James JT, McCluskey R et al (2004) Pulmonary toxicity of single walled carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  PubMed  CAS  Google Scholar 

  123. Barillet S, Simon-Deckers A, Herlin-Boime N et al (2010) Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubed exposure in several mammalian cell types: an in vitro study. J Nanopart Res 12:61–73

    Article  CAS  Google Scholar 

  124. Wang B, Feng W, Zhu M et al (2009) Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J Nanopart Res 11:41–53

    Article  CAS  Google Scholar 

  125. Villiers CL, Freitas H, Couderc R et al (2010) Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanopart Res 12:55–60

    Article  CAS  PubMed  Google Scholar 

  126. Yu KO, Grabinski CM, Schrand AM et al (2009) Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11:15–24

    Article  CAS  Google Scholar 

  127. Freitas RA Jr (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3:243–246

    Article  PubMed  Google Scholar 

  128. Mathieu JB, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53:292–299

    Article  PubMed  Google Scholar 

  129. Cavalcanti A, Shirinzadeh B, Freitas FA Jr et al (2008) Nanorobot architecture for medical target identification. Nanotechnology 19:015103

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Power, S., Slattery, M.M. & Lee, M.J. Nanotechnology and its Relationship to Interventional Radiology. Part II: Drug Delivery, Thermotherapy, and Vascular Intervention. Cardiovasc Intervent Radiol 34, 676–690 (2011). https://doi.org/10.1007/s00270-010-9967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-010-9967-y

Keywords

Navigation