Skip to main content

Advertisement

Log in

High-pressure behaviour and phase stability of Ca2B6O6(OH)10·2(H2O) (meyerhofferite)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The high-pressure behaviour of meyerhofferite [ideally Ca2B6O6(OH)10·2(H2O), with a ~ 6.63 Å, b ~ 8.34 Å, c ~ 6.47 Å, α = 90.8°, β = 102°, γ = 86.8°, Sp. Gr. P\(\overline{1}\)], a B-bearing raw material (with B2O3 ≈ 46 wt%) and a potential B-rich aggregate, has been studied by single-crystal synchrotron X-ray diffraction up to 9 GPa, under hydrostatic conditions. Meyerhofferite undergoes a first-order phase transition to meyerhofferite-II, likely iso-symmetric, bracketed between 3.05 and 3.48 GPa, with a spectacular unit-cell volume discontinuity (i.e., ΔV ~ 30 Å3). The isothermal bulk modulus (KV0 = β−1P0,T0, where βP0,T0 is the volume compressibility coefficient) of meyerhofferite, was found to be KV0 = 31.6(5) GPa, and a marked anisotropic compressional pattern, with K(a)0: K(b)0: K(c)0 ~ 1.5:1:3, was observed. The bulk modulus of meyerhofferite-II increases to 55(2) GPa and, differently to the majority of the borates studied at high pressure so far, the anisotropic compressional pattern of meyerhofferite decreases markedly in the high-pressure form. The P-induced deformation mechanisms controlling, at the atomic scale, the bulk compression of meyerhofferite are here described. Considerations about the use of meyerhofferite as a potential B-based aggregate in concretes, mortars or resins, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aksoʇan O, Binici H, Ortlek E (2016) Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes. Constr Build Mater 106:253–263

    Article  Google Scholar 

  • Angel RJ (2011) Win_Strain. A program to calculate strain tensors from unit-cell parameters. https://www.rossangel.com/home.htm. Accessed 1 Apr 2020

  • Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419

    Google Scholar 

  • Binici H, Aksogan O, Sevinc AH, Kucukonder A (2014) Mechanical and radioactivity shielding performances of mortars made with colemanite, barite, ground basaltic pumice and ground blast furnace slag. Constr Build Mater 50:177–183

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824

    Article  Google Scholar 

  • Birsoy R, Özbaş Ü (2012) Activity diagrams of borates: Implications on common deposits. Carbonate Evaporites 27:71–85

    Article  Google Scholar 

  • Burns PC, Hawthorne FC (1993) Hydrogen bonding in Meyerhofferite: an X-Ray and Structure energy study. Can Mineral 31:305–312

    Article  Google Scholar 

  • Carter RS, Palevsky H, Myers VW, Hughes DJ (1953) Thermal neutron absorption cross sections of boron and gold. Phys Rev 92:716–721

    Article  Google Scholar 

  • Christ CL, Clark JR (1956) The structure of meyerhofferite, Ca2O3B2O3·7H2O, a P-1 crystal, determined by the direct method of Hauptman & Karle. Acta Crystallogr 9:830–830

    Article  Google Scholar 

  • Comboni D, Gatta GD, Lotti P, Merlini M, Hanfland M (2019) Anisotropic compressional behavior of ettringite. Cement Concrete Res 120:46–51

    Article  Google Scholar 

  • Comboni D, Pagliaro F, Gatta GD, Lotti P, Milani S, Merlini M, Battiston T, Glazyrin K, Liermann HP (2020) High-pressure behavior and phase stability of Na2B4O6(OH)2·3H2O (kernite). J Am Ceram Soc. https://doi.org/10.1111/jace.17185(in press)

    Article  Google Scholar 

  • Foshag W (1924) Famous mineral localities: furnace Creek, Death Valley, California. Am Miner 9:8–10

    Google Scholar 

  • Frost RL, López A, Xi Y, Scholz R, Magela Da Costa G, Belotti FM, Malena R, Lima F (2013) Vibrational spectroscopy of the mineral meyerhofferite CaB3O3(OH)5·H2O-An assessment of the molecular structure. Spectrochim Acta A 114:27–32

    Article  Google Scholar 

  • Frost RL, Scholz R, Ruan X (2017) Thermal analysis, X-ray diffraction and infrared emission spectroscopy of the borate mineral meyerhofferite CaB3O3(OH)5·H2O. J Ther Anal Calorim 128:601–604

    Article  Google Scholar 

  • García-Veigas J, Helvaci C (2013) Mineralogy and sedimentology of the Miocene Göcenoluk borate deposit, Kirka district, western Anatolia, Turkey. Sediment Geol 290:85–96

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Fisch M, Armbruster T (2010) Stability at high pressure, elastic behavior and pressure-induced structural evolution of “Al5BO9”, a mullite-type ceramic material. Phys Chem Min 37:227–236

    Article  Google Scholar 

  • Gatta GD, Vignola P, Lee Y (2011) Stability of (Cs, K)Al4Be5B11O28 (londonite) at high pressure and high temperature: a potential neutron absorber material. Phys Chem Min 38:429–434

    Article  Google Scholar 

  • Gatta GD, Lotti P, Merlini M, Liermann H-P, Fisch M (2013) High-pressure behavior and phase stability of Al5BO9, a mullite-type ceramic material. J Am Ceram Soc 96:2583–2592

    Article  Google Scholar 

  • Gatta GD, Lotti P, Comboni D, Merlini M, Vignola P, Liermann H-P (2017) High-pressure behavior of (Cs, K)Al4Be5B11O28 (londonite): a single-crystal synchrotron diffraction study up to 26 GPa. J Am Ceram Soc 100:4893–4901

    Article  Google Scholar 

  • Gatta GD, Guastoni A, Lotti P, Guastella G, Fabelo O, Fernandez-Diaz MT (2020) A multi-methodological study of kernite, a mineral commodity of boron. Am Miner 105:1424–1431. https://doi.org/10.2138/am-2020-7433

    Article  Google Scholar 

  • Gencel O, Brostow W, Martinez-Barrera G, Gok MS (2012) Mechanical properties of polymer concretes containing different amount of hematite or colemanite. Polimery-W 57:276–283

    Article  Google Scholar 

  • Gonzalez-Platas J, Alvaro M, Nestola F, Angel R (2016) EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J Appl Crystallogr 49:1377–1382

    Article  Google Scholar 

  • Guzel G, Sivrikaya O, Deveci H (2016) The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties. Compos Part B- Eng 100:1–9

    Article  Google Scholar 

  • Helvacı C, Palmer MR (2017) Origin and distribution of evaporate borates-the 1 primary economic sources of boron. Elements 13:249–254

    Article  Google Scholar 

  • Kaplan MF (1989) Concrete radiation shielding: nuclear physics, concrete properties, design and construction, pp 457. Longman Scientific & Technical, Harlow Essex England, New York

  • Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:7

    Article  Google Scholar 

  • Lotti P, Gatta GD, Comboni D, Guastella G, Merlini M, Guastoni A, Liermann HP (2017) High-pressure behavior and P-induced phase transition of CaB3O4(OH)3·H2O (colemanite). J Am Ceram Soc 100:2209–2220

    Article  Google Scholar 

  • Lotti P, Gatta GD, Demitri N, Guastella G, Rizzato S, Ortenzi MA, Magrini F, Comboni D, Guastoni A, Fernandez-Diaz MT (2018) Crystal chemistry and temperature behavior of the natural hydrous borate colemanite, a mineral commodity of boron. Phys Chem Min 45:405–422

    Article  Google Scholar 

  • Lotti P, Comboni D, Gigli L, Carlucci L, Mossini E, Macerata E, Mariani M, Gatta GD (2019) Thermal stability and high-temperature behavior of the natural borate colemanite: an aggregate in radiation-shielding concretes. Constr Build Mater 203:679–686

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Merlini M, Hanfland M (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Res 33:511–522

    Article  Google Scholar 

  • Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  Google Scholar 

  • Okuno K (2005) Neutron shielding material based on colemanite and epoxy resin. Radiat Prot Dosim 115:258–261

    Article  Google Scholar 

  • Oto B, Gür A (2013) Determination of mass attenuation coefficients of concretes containing ulexite and ulexite concentrator waste. Ann Nucl Energy 59:72–74

    Article  Google Scholar 

  • Pagliaro F, Lotti P, Battiston T, Comboni D, Gatta GD, Camara F, Milani S, Merlini M, Glazyrin K, Liermann H (2020) Thermal and compressional behavior of the natural borate kurnakovite, MgB3O3(OH)5 5H2O. Constr Build Mat. https://doi.org/10.1016/j.conbuildmat.2020.121094

    Article  Google Scholar 

  • Palache C (1938) Crystallography of Meyerhofferite. Am Miner 23:644–648

    Google Scholar 

  • Palmer MR, Helvaci C (1997) The boron isotope geochemistry of the neogene borate deposits of western Turkey. Geochim Cosmochim Acta 61:3161–3169

    Article  Google Scholar 

  • Palmer M, Swihart G (1996) Boron isotope geochemistry: an overview. In: Anovitz L, Grew E (eds) Boron: mineralogy, petrology, and geochemistry, pp 709–744. Mineralogical Society of America, Washington

  • Petrícek V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352

    Google Scholar 

  • Piotrowski T, Glinicka J, Glinicki MA, Prochoń P (2019) Influence of gadolinium oxide and ulexite on cement hydration and technical properties of mortars for neutron radiation shielding purposes. Constr Build Mat 195:583–589

    Article  Google Scholar 

  • Rigaku Oxford Diffraction (2018) CrysAlisPro Software system, version 1.171.38.46. Rigaku Corporation, Oxford

  • Schaller WT (1916) Inyoite and meyerhofferite, two new calcium borates. US Geol Surv Bull 610:35–55

    Google Scholar 

  • USGS Department of the interior (2019) Mineral commodity summaries 2019. Reston, Virginia (USA). https://doi.org/10.3133/70202434

  • USGS Department of the interior, (2020) Mineral Commodity Summaries 2020. Reston, Virginia (USA). https://doi.org/10.3133/mcs2020

  • Yildiz Yorgun N, Kavaz E, Tekin HO, Sayyed MI, Özdemir F (2019) Borax effect on gamma and neutron shielding features of lithium borate glasses: an experimental and Monte Carlo studies. Mater Res Express. https://doi.org/10.1088/2053-1591/ab4fcc

    Article  Google Scholar 

Download references

Acknowledgements

ESRF is thanked for the allocation of the beamtime. Alessandro Guastoni (University of Padova) provided the sample of meyerhofferite used in this study. DC, GDG, FP, TB and PL acknowledge the support of the Italian Ministry of Education (MIUR) through the projects “PRIN2017—Mineral reactivity, a key to understand large-scale processes” (2017L83S77) and “Dipartimenti di Eccellenza 2018–2022”. GDG and PL acknowledge the support of the University of Milano through the project “Piano di Sostegno alla Ricerca 2019”. Two anonymous reviewers are thanked for their fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Comboni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comboni, D., Pagliaro, F., Gatta, G.D. et al. High-pressure behaviour and phase stability of Ca2B6O6(OH)10·2(H2O) (meyerhofferite). Phys Chem Minerals 47, 50 (2020). https://doi.org/10.1007/s00269-020-01117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01117-3

Keywords

Navigation