Skip to main content
Log in

Natural forsterite strongly enriched by arsenic and phosphorus: chemistry, crystal structure, crystal morphology and zonation

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Unusual variety of forsterite strongly enriched by pentavalent constituents, phosphorus and arsenic (up to 12.9 wt% P2O5 and up to 16.0 wt% As2O5) was found in sublimates of the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia, in association with As- and P-depleted forsterite, anhydrite, diopside, hematite, spinel, haüyne, fluorapatite, svabite, berzeliite, calciojohillerite, and arsenudinaite. This forsterite is the P-richest natural olivine which also demonstrates first case of As incorporation in an olivine-type silicate. P- and As-rich forsterite is orthorhombic, space group Pbnm, unit-cell parameters are: a = 4.7762(2), b =10.2643(4), c = 5.9646(2) Å and V = 292.41(2) Å3. Its crystal structure was solved on single crystal and refined to R = 2.88%. The crystal chemical formula is M(1)(Mg0.83[vac]0.17)M(2)(Mg0.95[vac]0.05)[Si0.56P0.32As0.12]O4. The substitution scheme for the incorporation of pentavalent constituents in forsterite is: VIMg2+ + 2IVSi4+ ↔ VI[vac]0 + 2IVT5+, in which T5+ = P, As and [vac] = vacancy. No sign of vacancies in the tetrahedrally coordinated T site is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford

    Google Scholar 

  • Agrell SO, Charnley NR, Chinner GA (1998) Phosphoran olivine from Pine Canyon, Piute Co., Utah. Mineral Mag 62:265–269

    Article  Google Scholar 

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1995) Handbook of mineralogy. II. Silica and Silicates. Mineral Data Publishing, Tucson

    Google Scholar 

  • Boesenberg JS (2006) Wrought iron from the USS Monitor: mineralogy, petrology and metallography. Arcaeometry 48:613–631

    Article  Google Scholar 

  • Boesenberg JS, Hewins RH (2010) An experimental investigation into the metastable formation of phosphoran olivine and pyroxene. Geochim Cosmochim Acta 74:1923–1941

    Article  Google Scholar 

  • Brodholt J (1997) Ab initio calculations on point defects in forsterite (Mg2SiO4) and implications for diffusion and creep. Am Mineral 82:1049–1053

    Article  Google Scholar 

  • Brown GE (1982) Olivines and silicate spinels. In: Ribbe PH (ed) Reviews in mineralogy. Orthosilicates, 2nd edn, vol 5. Mineralogical Society of America, Washington, DC, pp 275–365

    Google Scholar 

  • Buseck PR (1977) Pallasite meteorites—mineralogy, petrology and geochemistry. Geochim Cosmochim Acta 41:711–740

    Article  Google Scholar 

  • Buseck PR, Clark J (1984) Zaisho—a pallasite containing pyroxene and phosphoran olivine. Mineral Mag 48:229–235

    Article  Google Scholar 

  • Chukhrov FV (ed) (1972) Minerals. Vol. III. Pt. 1. Nauka Publishing, Moscow (in Russian)

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals. Orthosilicates, 2nd edn. Geological Society, London

    Google Scholar 

  • Fedotov SA, Markhinin YK (1983) The great tolbachik fissure eruption: geological and geophysical data 1975–1976. Cambridge University Press, Cambridge

    Google Scholar 

  • Goodrich CA (1984) Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disko Island, Greenland. Geochim Cosmochim Acta 48(5):1115–1126

    Article  Google Scholar 

  • Hamelet S, Casas-Cabanas M, Dupont L, Davoisne C, Tarascon LM, Masquelier C (2011) Existence of superstructures due to large amounts of Fe vacancies in the LiFePO4-type framework. Chem Mater 23:32–38

    Article  Google Scholar 

  • Hatert F, Ottolini L, Wouters J, Fontan F (2012) Structural study of the lithiophilite–sicklerite series. Am Mineral 50:843–854

    Google Scholar 

  • Janney DE, Banfield JF (1998) Distribution of cations and vacancies and the structure of defects in oxidized intermediate olivine by atomic-resolution TEM and image simulation. Am Mineral 83:799–810

    Article  Google Scholar 

  • Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190–193

    Article  Google Scholar 

  • Khisina NR, Khramov DA, Kleschev AA, Langer K (1998) Laihunitization as a mechanism of olivine oxidation. Eur J Mineral 10:229–238

    Article  Google Scholar 

  • Kondoh S, Kitamura M, Morimoto N (1985) Synthetic laihunite (□xFe 2+2-3x Fe 3+2x SiO4), an oxidation product of olivine. Am Mineral 70:737–746

    Google Scholar 

  • Konovalov AA, Tarasov VF, Dudnikova VB, Zharikov EV (2009) Study of divalent and trivalent chromium in forsterite by high-frequency EPR spectroscopy. Phys Solid State 51:1626–1633

    Article  Google Scholar 

  • Milman-Barris M, Beckett J, Baker M, Hofmann A, Morgan Z, Crowley M, Vielzeuf D, Stolper E (2008) Zoning of phosphorus in igneous olivine. Contrib Mineral Petrol 155:739–765

    Article  Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phosphoolivines as positive materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  • Pekov IV, Koshlyakova NN, Lykova IS, Britvin SN, Yapaskurt VO, Agakhanov AA, Shchipalkina NV, Turchkova AG, Sidorov EG (2018) Fumarolic arsenates—a special type of arsenic mineralization. Eur J Mineral 30:305–322

    Article  Google Scholar 

  • Petriček V, Duŝek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229(5):345–352

    Google Scholar 

  • Ryabov ID (2011) EPR study of chromium-doped forsterite crystals: Cr3+(M1) with and without associated nearest-neighbor Mg2+(M2) vacancy. Phys Chem Mineral 38:177–184

    Article  Google Scholar 

  • Sakyi PA, Tanaka R, Kobayashi K, Nakamura E (2012) Inherited Pb isotopic records in olivine antecryst-hosted melt inclusions from Hawaiian lavas. Geochem Cosmochim Acta 95:169–195

    Article  Google Scholar 

  • Schneider P, Tropper P, Kaindl R (2013) The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria). Mineral Petrol 107:327–340

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Cryst B25:925–946

    Article  Google Scholar 

  • Shcherbakov VD, Plechov PYu (2018) P-bearing olivine from lava flow of 2012–2013 Tolbachik volcano eruption. New Data Miner 52:15–17

    Google Scholar 

  • Stashans A, Flores Y (2013) Modelling of neutral vacancies in forsterite mineral. Int J Mod Phys B27(25):1–14

    Google Scholar 

  • Tamada O, Shen B, Morimoto N (1983) The crystal structure of laihunite (□ 0.40 Fe 2+0.80 Fe 3+0.80 SiO4)—nonstoichiometric olivine-type mineral. Mineral J 11(8):382–391

    Article  Google Scholar 

  • Tropper P, Recheis A, Konzett J (2004) Pyrometamorphic formation of phosphorus-rich olivines in partially molten metapelitic gneisses from a prehistoric sacrificial burning site (Otz Valley, Tyrol, Austria). Eur J Mineral 16:631–640

    Article  Google Scholar 

  • Tschegg C, Ntaflos T, Kiraly F, Harangi S (2010) High temperature corrosion of olivine phenocrysts in Pliocene basalts from Banat, Romania. Austrian J Earth Sci 103:101–110

    Google Scholar 

  • Walker AW, Woodley SM, Slater B, Wright K (2009) A computational study of magnesium point defects and diffusion in forsterite. Phys Earth Planet Inter 172:20–27

    Article  Google Scholar 

  • Wang Y, Hua X, Hsu W (2006) Phosphoran-olivine in opaque assemblages of the Ningqiang carbonaceous chondrite: implication to their preqursors. Lunar Planet Sci, vol XXXVII. Lunar Planet Institute, Houston (abstr.)

    Google Scholar 

  • Welsch B, Hammer J, Hellebrand E (2014) Phosphorus zoning reveals dendritic architecture of olivine. Geology. Geological Society of America, Colorado

    Google Scholar 

  • Yamada A, Hosoya M, Chung S-C, Kudo Y, Hinokuma K, Liu K-Yu, Nishi Y (2003) Olivine-type cathodes: achievements and problems. J Pow Sour 119–121:232–238

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for valuable comments. We are grateful to Dmitry A. Varlamov for his assistance in electron microprobe studies and Pavel Yu. Plechov for discussion. This work was supported by the Russian Foundation for Basic Research, Grant no. 17-05-00179 (in part of mineralogical and structural studies) and the Russian Science Foundation, Grant no. 19-17-00050 (in part of crystal chemical analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda V. Shchipalkina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipalkina, N.V., Pekov, I.V., Zubkova, N.V. et al. Natural forsterite strongly enriched by arsenic and phosphorus: chemistry, crystal structure, crystal morphology and zonation. Phys Chem Minerals 46, 889–898 (2019). https://doi.org/10.1007/s00269-019-01048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-019-01048-8

Keywords

Navigation