Skip to main content
Log in

EPR study of chromium-doped forsterite crystals: Cr3+(M1) with and without associated nearest-neighbor Mg2+(M2) vacancy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) study of single crystals of chromium-doped forsterite grown by the Czochralski method in two different research laboratories has revealed, apart from the known paramagnetic centers Cr3+(M1), Cr3+(M2) and Cr4+, a new center \( {\text{Cr}}^{ 3+ } (M 1){-}V_{{{\text{Mg}}^{ 2+ } }} (M 2) \) formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values and A values of the 53Cr hyperfine splitting have been determined as follows: D = 33.95(3) GHz, E = 8.64(1) GHz, g = [1.9811(2), 1.9787(2), 1.9742(2)], A = [51(3), 52(2), 44(3)] MHz. The center has been identified by comparing EPR spectra with those of the charge-uncompensated ion Cr3+(M1) and the ion pair Cr3+(M1)–Li+(M2) observed in forsterite crystals codoped with chromium and lithium. It has been found that the concentration of the new center decreases to zero, whereas that of the Cr3+(M1) and Cr3+(M1)–Li+(M2) centers increases with an increase of the Li content from 0 up to ~0.03 wt% (at the same Cr content ~0.07 wt%) in the melt. The known low-temperature luminescence data pertinent to the centers under consideration are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford

    Google Scholar 

  • Baryshevski VG, Korzhik MV, Livshitz MG, Tarasov AA, Kimaev AE, Mishkel II, Meilman ML, Minkov BJ, Shkadarevich AP (1991) Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping. In: Dube G, Chase L (eds) OSA proceedings on advanced solid-state lasers, vol 10. Optical Society of America, Washington, DC, pp 26–34

    Google Scholar 

  • Bershov LV, Gaite J-M, Hafner SS, Rager H (1983) Electron paramagnetic resonance and ENDOR studies of Cr3+–Al3+ pairs in forsterite. Phys Chem Miner 9:95–101

    Article  Google Scholar 

  • Birle JD, Gibbs GV, Moore PB, Smith JV (1968) Crystal structures of natural olivines. Am Mineral 53:807–824

    Google Scholar 

  • Budil DE, Park DG, Burlitch JM, Geray RF, Dieckmann R, Freed JH (1994) 9.6 GHz and 34 GHz electron paramagnetic resonance studies of chromium-doped forsterite. J Chem Phys 101:3538–3548

    Article  Google Scholar 

  • Forbes CE (1983) Analysis of the spin-Hamiltonian parameters for Cr3+ in mirror and inversion symmetry sites of alexandrite (Al2-x Cr x BeO4). Determination of the relative site occupancy by EPR. J Chem Phys 79:2590–2599

    Article  Google Scholar 

  • Garrett MH, Chan VH, Jenssen HP, Whitmore MH, Sacra A, Singel DJ, Simkin DJ (1991) Comparison of chromium-doped forsterite and akermanite laser host crystals. In: Dube G, Chase L (eds) OSA proceedings on advanced solid-state lasers, vol 10. Optical Society of America, Washington, DC, pp 76–81

    Google Scholar 

  • Glynn TJ, Imbusch GF, Walker G (1991) Luminescence from Cr3+ centres in forsterite (Mg2SiO4). J Lumin 48, 49:541–544

    Google Scholar 

  • Groh DJ, Pandey R, Recio JM (1994) Embedded-quantum-cluster study of local relaxations and optical properties of Cr3+ in MgO. Phys Rev 50:14860–14866

    Article  Google Scholar 

  • Hall PL, Angel BR, Jones JPE (1974) Dependence of spin Hamiltonian parameters E and D on labeling of magnetic axes: application to ESR of high-spin Fe3+. J Magn Reson 15:64–68

    Google Scholar 

  • Hoffman KR, Casas-Gonzalez J, Jacobsen SM, Yen WM (1991) Electron-paramagnetic-resonance and fluorescence-line-narrowing measurements of the lasing center in Cr-doped forsterite. Phys Rev B 44:12589–12592

    Article  Google Scholar 

  • Jia W, Liu H, Jaffe S, Yen WM, Denker B (1991) Spectroscopy of Cr3+ and Cr4+ ions in forsterite. Phys Rev B 43:5234–5242

    Article  Google Scholar 

  • Kück S (2001) Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers. Appl Phys B 72:515–562

    Google Scholar 

  • Lebedev VF, Ryabov ID, Gaister AV, Podstavkin AS, Zharikov EV, Shestakov AV (2005) Spectral and generation properties of a new laser crystal (Cr3+, Li):Mg2SiO4. Phys Solid State 47:1504–1506

    Article  Google Scholar 

  • Macfarlane RM (1963) Analysis of the spectrum of d 3 ions in trigonal crystal fields. J Chem Phys 39:3118–3126

    Article  Google Scholar 

  • McPherson GL, Heung W (1976) Electron paramagnetic resonance spectrum of exchange-coupled pairs of Cr3+ ions in single crystals of CsMgCl3. Solid State Commun 19:53–56

    Article  Google Scholar 

  • McPherson GL, Heung W, Barraza JJ (1978) Coupled pairs of chromium(III) ions in crystals of CsMgCl3, CsMgBr3, and CsCdBr3. A case of charge compensation induced pair formation. J Am Chem Soc 100:469–475

    Article  Google Scholar 

  • Meilman ML, Livshitz MG (1992) Origin of lasing in forsterite: additional data and analysis. In: Chase LL, Pinto AA (eds) OSA proceedings on advanced solid-state lasers, vol 13. Optical Society of America, Washington DC, pp 39–41

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge, pp 521–528

    Google Scholar 

  • Racah G (1942) Theory of complex spectra. II. Phys Rev 62:438–462

    Article  Google Scholar 

  • Rager H (1977) Electron spin resonance of trivalent chromium in forsterite, Mg2SiO4. Phys Chem Miner 1:371–378

    Article  Google Scholar 

  • Rudowicz C, Bramley R (1985) On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry. J Chem Phys 83:5192–5197

    Article  Google Scholar 

  • Ryabov ID (1995) Electron paramagnetic resonance of the SO4 3− radical in barite and celestite. Phys Chem Miner 22:406–410

    Article  Google Scholar 

  • Ryabov ID (2009) On the operator equivalents and the crystal-field and spin Hamiltonian parameters. Appl Magn Reson 35:481–494

    Article  Google Scholar 

  • Ryabov ID, Gaister AV, Zharikov EV (2003) Electron paramagnetic resonance of Cr3+–Li+ centers in (Cr, Li):Mg2SiO4 synthetic forsterite. Phys Solid State 45:51–56

    Article  Google Scholar 

  • Shakurov GS, Tarasov VF (2001) High-frequency tunable EPR spectroscopy of Cr3+ in synthetic forsterite. Appl Magn Reson 21:597–605

    Article  Google Scholar 

  • Tarasov VF, Shakurov GS, Gavrilenko AN (1995) EPR of chromium ions in synthetic forsterite at submillimeter range. Phys Solid State 37:270

    Google Scholar 

  • Wertz JE, Auzins P (1957) Crystal vacancy evidence from electron spin resonance. Phys Rev 106:484–488

    Article  Google Scholar 

  • Whitmore MH, Sacra A, Singel DJ (1993) Electron paramagnetic resonance spectroscopy of tetrahedral Cr4+ in chromium-doped forsterite and akermanite. J Chem Phys 98:3656–3664

    Article  Google Scholar 

  • Wood DL (1965) Absorption, fluorescence, and Zeeman effect in emerald. J Chem Phys 42:3404–3410

    Article  Google Scholar 

  • Wood DL, Imbusch GF, Macfarlane RM, Kisliuk P, Larkin DM (1968) Optical spectrum of Cr3+ ions in spinels. J Chem Phys 48:5255–5263

    Article  Google Scholar 

  • Wu X-X, Fang W, Feng W-L, Zheng W-C (2009) Study of EPR parameters and defect structure for two tetragonal impurity centers in MgO:Cr3+ and MgO:Mn4+ crystals. Appl Magn Reson 35:503–510

    Article  Google Scholar 

  • Wybourne BG (1965) Spectroscopic properties of rare earths. Interscience Publishers, New York, p 164

    Google Scholar 

  • Yu W-L (1996) Study of the local distortion of the tetragonal charge-compensation defect sites in Cr3+:MgO. Phys Lett A 221:355–358

    Article  Google Scholar 

  • Yu W-L (1998) Local distortion of the orthorhombic charge-compensation defect sites in Cr3+:MgO. J Phys Chem Solids 59:261–263

    Article  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Professor M. L. Meilman (Meylman), Professor E. V. Zharikov and Dr. A. V. Gaister for kindly supplying the laser chromium-doped forsterite single crystals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Ryabov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabov, I.D. EPR study of chromium-doped forsterite crystals: Cr3+(M1) with and without associated nearest-neighbor Mg2+(M2) vacancy. Phys Chem Minerals 38, 177–184 (2011). https://doi.org/10.1007/s00269-010-0393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0393-0

Keywords

Navigation