Skip to main content

Advertisement

Log in

Phase transition and thermoelastic behavior of barite-group minerals at high-pressure and high-temperature conditions

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Experimental studies on the phase transition and thermoelastic behavior of barite-group minerals are crucial to understand the recycle of sulfur in Earth’s interior. Here, we present a high-pressure and high-temperature (high P–T) study on two barite-group minerals—barite (BaSO4) and celestite (SrSO4) up to ~ 59.5 GPa 700 K and ~ 22.2 GPa, 700 K, respectively, using in situ synchrotron-based X-ray diffraction (XRD) combined with diamond anvil cells (DACs). Our results show that BaSO4 undergoes a pressure-induced phase transition from Pbnm to P212121 at ~ 20.3 GPa, which is different from the previous results. Upon decompression, the high-pressure phase of BaSO4 transforms back into its initial structure, which indicates a reversible phase transition. However, no phase transitions have been detected in SrSO4 over the experimental P–T range. In addition, fitting a third-order Birch–Murnaghan equation of state to the pressure–volume data yields the bulk moduli and their pressure derivatives of BaSO4 and SrSO4. Simultaneously, the thermal expansion coefficients of BaSO4 and SrSO4 are also obtained, by fitting the temperature-volume data to the Fei-type thermal equation of state. Furthermore, the compositional effects on the phase transformation and thermoelastic behavior of barite-group minerals are also discussed, and the results suggest that the bond length of < M–O > (M=Ba, Sr, Pb) is an important factor that causes the phase transition pressure of SrSO4 to be the largest, PbSO4 is the second, and BaSO4 is the lowest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Acknowledgements

We are grateful to the beamline scientist of BL15U1 of SSRF and 4W2 of BSRF for the technical help. We also acknowledge HYS for the Neon gas-loading assistance. This project was supported by the National Natural Science Foundation of China (Grant nos. 41772043 and 41802043), the Joint Research Fund in Huge Scientific Equipment (U1632112) under cooperative agreement between NSFC and CAS, the Chinese Academy of Sciences “Light of West China” Program (Dawei Fan, 2017), Youth Innovation Promotion Association CAS (Dawei Fan, 2018434), and the CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows (Grant no. 2017LH014). The high-pressure XRD experiments were performed at the High-Pressure Experiment Station (4W2), Beijing Synchrotron Radiation Facility (BSRF), and the BL15U1 of the Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenge Zhou or Maining Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Li, B., Chen, W. et al. Phase transition and thermoelastic behavior of barite-group minerals at high-pressure and high-temperature conditions. Phys Chem Minerals 46, 607–621 (2019). https://doi.org/10.1007/s00269-019-01026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-019-01026-0

Keywords

Navigation