Skip to main content
Log in

Chemical and structural studies of coexisting 1M- and 2M1-polytypes in synthetic fluorophlogopites and influence of Al on the polytype formation

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Polytyism of micas is ubiquitous in natural rocks and can be used as an indicator of physical and chemical conditions in related diagenetic processes. To reveal the formation mechanisms of different polytypes, 1M- and 2M1-fluorophlogopite were synthesized using the melting method, and experiments with different Al concentration in the initial reactants were also performed. The structure refinement indicates that the space group of the 1M-fluorophlogopite is C2/m, and the lattice parameters are a = 5.2941(4) Å, b = 9.1773(6) Å, c = 10.1061(7) Å, β = 100.141(7)°. The space group of the 2M1-fluorophlogopite is C2/c, and the lattice parameters are a = 5.3094(16) Å, b = 9.1973(28) Å, c = 20.0442(60) Å, β = 95.141(7)°. The isomorphous substitution of Al3+ for Si4+ in tetrahedral sites of fluorophlogopite causes distortion in the layer structure, and results in a larger tetrahedral rotation angle α, longer tetrahedral bond distance, smaller tetrahedral flattening angle τ, larger bond length difference between inner and outer potassium–oxygen (∆〈K–O〉mean), and relative higher value of octahedral flattening angle ψ. Our experimental results suggest that the content of structural Al has no correlation with the polytype formation, whereas the Al concentration in reactants influences the formation of 1M- and 2M1-fluorophlogopite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balassone G, Scordari F, Lacalamita M, Schingaro E, Mormone A, Piochi M, Petti C, Mondillo N (2013) Trioctahedral micas in xenolithic ejecta from recent volcanism of the Somma-Vesuvius (Italy): crystal chemistry and genetic inferences. Lithos 160–161:84–97

    Article  Google Scholar 

  • Baronnet A (1980) Polytypism in micas: a survey with emphasis on the crystal growth aspects. In: Kaldis E (ed) Current topics in materials science, vol 5. North Holland, Amsterdam, pp 447–548

    Google Scholar 

  • Baronnet A (1992) Polytypism and stacking disorder. In: Buseck PR (ed) Minerals and reactions at the atomic scale: TEM, reviews in mineralogy and geochemistry, vol 27. Mineralogical Society of America and the Geochemical Society, Washington, pp 231–288

    Chapter  Google Scholar 

  • Baronnet A, Nitsche S, Kang ZC (1993) Layer stacking microstructures in a biotite single crystal: a combined hrem-aem study. Phase Transit 43:107–128

    Article  Google Scholar 

  • Bigi S, Brigatti MF (1994) Crystal chemistry and microstructures of plutonic biotite. Am Miner 79:63–72

    Google Scholar 

  • Bloss FD, Gibbs GV, Cummings D (1963) Polymorphism and twinning in synthetic fluorophlogopite. J Geol 71(5):537–548

    Article  Google Scholar 

  • Bozhilov KN, Xu Z, Dobrzhinetskaya LF, Jin ZM, Green HWII (2009) Cation-deficient phlogopitic mica exsolution in diopside from garnet peridotite in SuLu. China Lithos 109:304–313

    Article  Google Scholar 

  • Brigatti MF, Guggenheim S (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. In: Mottana A, Sassi FP, Thompson JB Jr, Guggenheim S (eds) Micas: crystal chemistry and metamorphic petrology, vol 46. Mineralogical Society of America and the Geochemical Society, Washington, pp 1–97 (reviews in mineralogy and geochemistry)

    Google Scholar 

  • Brigatti MF, Guidotti CV, Malferrari D, Sassi FP (2008) Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequences from western Maine. Am Miner 93:396–408

    Article  Google Scholar 

  • Broady S, Wood DJ, Kilcoyne SH, Bubb NL (2012) Depleted brittle mica structure determination in Ba-phlogopite glass-ceramics. J Mater Sci 47(13):5298–5307

    Article  Google Scholar 

  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  Google Scholar 

  • Donnay G, Takeda H, Donnay JDH (1964) Trioctahedral 1-layer micas. II. Prediction of structure from composition and cell dimensions. Acta Crystallogr A 17(11):1374–1381

    Article  Google Scholar 

  • Fregola RA, Capitani G, Scandale E, Ottolini L (2009) Chemical control of 3T stacking order in a Li-poor biotite mica. Am Miner 94:334–344

    Article  Google Scholar 

  • Fukase M, Sakai Y, Kitajima K (1996) Synthesis of fluorine muscovite by solid state reaction method and its thermal durability. J Ceram Soc Jpn 104:428–434

    Article  Google Scholar 

  • Garai M, Sasmal N, Molla AR, Singh SP, Tarafder A, Karmakar B (2014) Effects of nucleating agents on crystallization and microstructure of fluorophlogopite mica-containing glass-ceramics. J Mater Sci 49(4):1612–1623

    Article  Google Scholar 

  • Gianfagna A, Scordari F, Mazziotti-Tagliani S, Ventruti G, Ottolini L (2007) Fluorophlogopite from Biancavilla (Mt. Etna, Sicily, Italy): crystal structure and crystal chemistry of a new F-dominant analog of phlogopite. Am Miner 92:1601–1609

    Article  Google Scholar 

  • Güven N (1971) Structural factors controlling stacking sequences in dioctahedral micas. Clays Clay Miner 19(3):159–165

    Article  Google Scholar 

  • Hammouda T, Pichavant M, Barbey P, Brearley AJ (1995) Synthesis of fluorphlogopite single crystals. Applications to experimental studies. Eur J Miner 7:1381–1387

    Article  Google Scholar 

  • Hazen RM, Burnham CW (1973) Crystal structures of one-layer phlogopite and annite. Am Miner 58:889–900

    Google Scholar 

  • Kohn JA, Hatch RA (1955) Synthetic mica investigations, VI: X-ray and optical data on synthetic fluorphlogopite. Am Miner 40:10–21

    Google Scholar 

  • Lacalamita M, Mesto E, Scordari F, Schingaro E (2012) Chemical and structural study of 1M- and 2M 1-phlogopites coexisting in the same Kasenyi kamafugitic rock (SW Uganda). Phys Chem Miner 39:601–611

    Article  Google Scholar 

  • Laurora A, Brigatti MF, Mottana A, Malferrari D, Caprilli E (2007) Crystal chemistry of trioctahedral micas in alkaline and subalkaline volcanic rocks: a case study from Mt. Sassetto (Tolfa district, Latium, central Italy). Am Miner 92:468–480

    Article  Google Scholar 

  • Lepore GO, Bindi L, Pedrazzi G, Conticelli S, Bonazzi P (2017) Structural and chemical variations in phlogopite from lamproitic rocks of the Central Mediterranean region. Lithos 286–287:191–205

    Article  Google Scholar 

  • Mccauley JW, Newnham RE (1971) Origin and prediction of ditrigonal distortions in micas. Am Miner 56:1626–1638

    Google Scholar 

  • Mccauley JW, Newnham RE, Gibbs GV (1973) Crystal structure analysis of synthetic fluorophlogopite. Am Miner 58:249–254

    Google Scholar 

  • Mercier PHJ, Evans RJ, Rancourt DG (2005) Geometric crystal chemical models for structural analysis of micas and their stacking polytypes. Am Miner 90:382–398

    Article  Google Scholar 

  • Meunier A (2005) Clays. Springer, Berlin, pp 1–57

    Google Scholar 

  • Miyawaki R, Shimazaki H, Shigeoka M, Yokoyama K, Matsubara S, Yurimoto H (2011) Yangzhumingite, KMg2.5Si4O10F2, a new mineral in the mica group from Bayan Obo, Inner Mongolia, China. Eur J Miner 23:467–473

    Article  Google Scholar 

  • Nespolo M (2001) Perturbative theory of mica polytypism, role of the M2 layer in the formation of inhomogeneous polytypes. Clays Clay Miner 49(1):1–23

    Article  Google Scholar 

  • Nespolo M, Takeda H, Kogure T, Ferraris G (1999) Periodic intensity distribution (PID) of mica polytypes: symbolism, structural model orientation and axial settings. Acta Crystallogr Sect A 55:659–676

    Article  Google Scholar 

  • Pavese A, Ferraris G, Pischedda V, Radaelli P (2000) Further study of the cation ordering in phengite 3T by neutron powder diffraction. Miner Mag 64(1):11–18

    Article  Google Scholar 

  • Petersen EU, Essene EJ, Peacor DR, Valley JW (1982) Fluorine end-member micas and amphiboles. Am Miner 67:538–544

    Google Scholar 

  • Renner B, Lehmann G (1986) Correlation of angular and bond length distortions in TO4 units in crystals. Z Kristallogr 175:43–59

    Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadriatic elongation-quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Schingaro E, Lacalamita M, Scordari F, Brigatti MF, Pedrazzi G (2011) Crystal chemistry of Ti-rich fluorophlogopite from Presidente Olegario, Alto Paranaiba igneous province, Brazil. Am Miner 96:732–743

    Article  Google Scholar 

  • Schingaro E, Kullerud K, Lacalamita M, Mesto E, Scordari F, Zozulya D, Erambert M, Ravna EJK (2014) Yangzhumingite and phlogopite from the Kvaloya lamproite (North Norway): structure, composition and origin. Lithos 210–211:1–13

    Article  Google Scholar 

  • Scordari F, Schingaro E, Lacalamita M, Mesto E (2012) Crystal chemistry of trioctahedral micas-2M 1 from Bunyaruguru kamafugite (southwest Uganda). Am Miner 97:430–439

    Article  Google Scholar 

  • Scordari F, Schingaro E, Ventruti G, Nicotra E, Viccaro M, Tagliani SM (2013) Fluorophlogopite from Piano delle Concazze (Mt. Etna, Italy): crystal chemistry and implications for the crystallization conditions. Am Miner 98:1017–1025

    Article  Google Scholar 

  • Sheldrick GM (2003) SADABS, program for empirical absorption correction of area detector data. University of Göttingen, Germany

    Google Scholar 

  • Siemens (2004) SMART, SAINT (version 7.23A). Siemens Analytical X-ray Instruments, Madison

    Google Scholar 

  • Smith JV, Bailey SW (1963) Second review of Al-O ang Si-O tetrahedral distances. Acta Crystallogr A 16:801–811

    Article  Google Scholar 

  • Smith JV, Yoder HS (1956) Experimental and theoretical studies of the mica polymorphs. Miner Mag 31:209–235

    Google Scholar 

  • Sunagawa I, Endo Y, Daimon N, Tate I (1968) Nucleation, growth and polytypism of fluorophlogopite from the vapour phase. J Cryst Growth 3:751

    Article  Google Scholar 

  • Takeda H, Morosin B (1975) Comparison of observed and predicted structural parameters of mica at high temperature. Acta Crystallogr Sect B31:2444–2452

    Article  Google Scholar 

  • Takeda H, Ross M (1975) Mica polytypism-dissimilarities in crystal-structure of coexisting 1M and 2M 1 biotite. Am Miner 60:1030–1040

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Toraya H (1981) Distortions of octahedra and octahedral sheets in 1M micas and the relation to their stability. Z Kristallogr 157:173–190

    Google Scholar 

  • Toraya H, Iwai S, Marumo F, Daimon M, Kondo R (1976) Crystal-structure of tetrasilicic potassium fluor mica, KMg2.5Si4O10F2. Z Kristallogr 144(S):42–52

    Article  Google Scholar 

  • Toraya H, Iwai SI, Marumo F, Nishikawa T, Hirao M (1978) The crystal structure of synthetic mica, KMg2.75Si3.5Al0.5O10F2. Mineral J 9(4):210–220

    Article  Google Scholar 

  • Toraya H, Marumo F, Hiráo M (1983) Synthesis and the crystal structure of a manganoan fluoromica, K(Mg2.44Mn0.24)(Si3.82Mn0.18)O10F2. Mineral J 11(5):240–247

    Article  Google Scholar 

  • Valkenburg AV, Pike RG (1952) Synthesis of mica. J Res Natl Bureau Stand 48(5):360–369

    Article  Google Scholar 

  • Weiss Z, Rieder M, Chmielova M (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates. Eur J Mineral 4:665–682

    Article  Google Scholar 

  • Xu HF, Veblen DR (1995) Periodic and nonperiodic stacking in biotite from the Bingham Canyon porphyry copper-deposit, Utah. Clays Clay Miner 43(2):159–173

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (Grant nos. 41530313, 41772039) and Key Research Program of Frontier Sciences, CAS (Grant no. QYZDJ-SSW-DQC023). We thank Zier Yan for providing the software of CrysAlisPro, and Prof. Huifang Xu and Dr. Yuebo Wang for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongping He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Tan, W., He, H. et al. Chemical and structural studies of coexisting 1M- and 2M1-polytypes in synthetic fluorophlogopites and influence of Al on the polytype formation. Phys Chem Minerals 46, 259–270 (2019). https://doi.org/10.1007/s00269-018-1002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-1002-x

Keywords

Navigation