Physics and Chemistry of Minerals

, Volume 46, Issue 3, pp 259–270 | Cite as

Chemical and structural studies of coexisting 1M- and 2M1-polytypes in synthetic fluorophlogopites and influence of Al on the polytype formation

  • Aiqing Chen
  • Wei Tan
  • Hongping HeEmail author
  • Guowu Li
  • Xinye Wu
  • Qi Tao
  • Jianxi Zhu
Original Paper


Polytyism of micas is ubiquitous in natural rocks and can be used as an indicator of physical and chemical conditions in related diagenetic processes. To reveal the formation mechanisms of different polytypes, 1M- and 2M1-fluorophlogopite were synthesized using the melting method, and experiments with different Al concentration in the initial reactants were also performed. The structure refinement indicates that the space group of the 1M-fluorophlogopite is C2/m, and the lattice parameters are a = 5.2941(4) Å, b = 9.1773(6) Å, c = 10.1061(7) Å, β = 100.141(7)°. The space group of the 2M1-fluorophlogopite is C2/c, and the lattice parameters are a = 5.3094(16) Å, b = 9.1973(28) Å, c = 20.0442(60) Å, β = 95.141(7)°. The isomorphous substitution of Al3+ for Si4+ in tetrahedral sites of fluorophlogopite causes distortion in the layer structure, and results in a larger tetrahedral rotation angle α, longer tetrahedral bond distance, smaller tetrahedral flattening angle τ, larger bond length difference between inner and outer potassium–oxygen (∆〈K–O〉mean), and relative higher value of octahedral flattening angle ψ. Our experimental results suggest that the content of structural Al has no correlation with the polytype formation, whereas the Al concentration in reactants influences the formation of 1M- and 2M1-fluorophlogopite.


Fluorophlogopite Crystal structure Polytype formation Structural distortion 



This study was financially supported by National Natural Science Foundation of China (Grant nos. 41530313, 41772039) and Key Research Program of Frontier Sciences, CAS (Grant no. QYZDJ-SSW-DQC023). We thank Zier Yan for providing the software of CrysAlisPro, and Prof. Huifang Xu and Dr. Yuebo Wang for their constructive suggestions.

Supplementary material

269_2018_1002_MOESM1_ESM.cif (20 kb)
Supplementary material 1 (CIF 20 KB)
269_2018_1002_MOESM2_ESM.cif (24 kb)
Supplementary material 2 (CIF 25 KB)
269_2018_1002_MOESM3_ESM.doc (983 kb)
Supplementary material 3 (DOC 983 KB)


  1. Balassone G, Scordari F, Lacalamita M, Schingaro E, Mormone A, Piochi M, Petti C, Mondillo N (2013) Trioctahedral micas in xenolithic ejecta from recent volcanism of the Somma-Vesuvius (Italy): crystal chemistry and genetic inferences. Lithos 160–161:84–97CrossRefGoogle Scholar
  2. Baronnet A (1980) Polytypism in micas: a survey with emphasis on the crystal growth aspects. In: Kaldis E (ed) Current topics in materials science, vol 5. North Holland, Amsterdam, pp 447–548Google Scholar
  3. Baronnet A (1992) Polytypism and stacking disorder. In: Buseck PR (ed) Minerals and reactions at the atomic scale: TEM, reviews in mineralogy and geochemistry, vol 27. Mineralogical Society of America and the Geochemical Society, Washington, pp 231–288CrossRefGoogle Scholar
  4. Baronnet A, Nitsche S, Kang ZC (1993) Layer stacking microstructures in a biotite single crystal: a combined hrem-aem study. Phase Transit 43:107–128CrossRefGoogle Scholar
  5. Bigi S, Brigatti MF (1994) Crystal chemistry and microstructures of plutonic biotite. Am Miner 79:63–72Google Scholar
  6. Bloss FD, Gibbs GV, Cummings D (1963) Polymorphism and twinning in synthetic fluorophlogopite. J Geol 71(5):537–548CrossRefGoogle Scholar
  7. Bozhilov KN, Xu Z, Dobrzhinetskaya LF, Jin ZM, Green HWII (2009) Cation-deficient phlogopitic mica exsolution in diopside from garnet peridotite in SuLu. China Lithos 109:304–313CrossRefGoogle Scholar
  8. Brigatti MF, Guggenheim S (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. In: Mottana A, Sassi FP, Thompson JB Jr, Guggenheim S (eds) Micas: crystal chemistry and metamorphic petrology, vol 46. Mineralogical Society of America and the Geochemical Society, Washington, pp 1–97 (reviews in mineralogy and geochemistry)Google Scholar
  9. Brigatti MF, Guidotti CV, Malferrari D, Sassi FP (2008) Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequences from western Maine. Am Miner 93:396–408CrossRefGoogle Scholar
  10. Broady S, Wood DJ, Kilcoyne SH, Bubb NL (2012) Depleted brittle mica structure determination in Ba-phlogopite glass-ceramics. J Mater Sci 47(13):5298–5307CrossRefGoogle Scholar
  11. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341CrossRefGoogle Scholar
  12. Donnay G, Takeda H, Donnay JDH (1964) Trioctahedral 1-layer micas. II. Prediction of structure from composition and cell dimensions. Acta Crystallogr A 17(11):1374–1381CrossRefGoogle Scholar
  13. Fregola RA, Capitani G, Scandale E, Ottolini L (2009) Chemical control of 3T stacking order in a Li-poor biotite mica. Am Miner 94:334–344CrossRefGoogle Scholar
  14. Fukase M, Sakai Y, Kitajima K (1996) Synthesis of fluorine muscovite by solid state reaction method and its thermal durability. J Ceram Soc Jpn 104:428–434CrossRefGoogle Scholar
  15. Garai M, Sasmal N, Molla AR, Singh SP, Tarafder A, Karmakar B (2014) Effects of nucleating agents on crystallization and microstructure of fluorophlogopite mica-containing glass-ceramics. J Mater Sci 49(4):1612–1623CrossRefGoogle Scholar
  16. Gianfagna A, Scordari F, Mazziotti-Tagliani S, Ventruti G, Ottolini L (2007) Fluorophlogopite from Biancavilla (Mt. Etna, Sicily, Italy): crystal structure and crystal chemistry of a new F-dominant analog of phlogopite. Am Miner 92:1601–1609CrossRefGoogle Scholar
  17. Güven N (1971) Structural factors controlling stacking sequences in dioctahedral micas. Clays Clay Miner 19(3):159–165CrossRefGoogle Scholar
  18. Hammouda T, Pichavant M, Barbey P, Brearley AJ (1995) Synthesis of fluorphlogopite single crystals. Applications to experimental studies. Eur J Miner 7:1381–1387CrossRefGoogle Scholar
  19. Hazen RM, Burnham CW (1973) Crystal structures of one-layer phlogopite and annite. Am Miner 58:889–900Google Scholar
  20. Kohn JA, Hatch RA (1955) Synthetic mica investigations, VI: X-ray and optical data on synthetic fluorphlogopite. Am Miner 40:10–21Google Scholar
  21. Lacalamita M, Mesto E, Scordari F, Schingaro E (2012) Chemical and structural study of 1M- and 2M 1-phlogopites coexisting in the same Kasenyi kamafugitic rock (SW Uganda). Phys Chem Miner 39:601–611CrossRefGoogle Scholar
  22. Laurora A, Brigatti MF, Mottana A, Malferrari D, Caprilli E (2007) Crystal chemistry of trioctahedral micas in alkaline and subalkaline volcanic rocks: a case study from Mt. Sassetto (Tolfa district, Latium, central Italy). Am Miner 92:468–480CrossRefGoogle Scholar
  23. Lepore GO, Bindi L, Pedrazzi G, Conticelli S, Bonazzi P (2017) Structural and chemical variations in phlogopite from lamproitic rocks of the Central Mediterranean region. Lithos 286–287:191–205CrossRefGoogle Scholar
  24. Mccauley JW, Newnham RE (1971) Origin and prediction of ditrigonal distortions in micas. Am Miner 56:1626–1638Google Scholar
  25. Mccauley JW, Newnham RE, Gibbs GV (1973) Crystal structure analysis of synthetic fluorophlogopite. Am Miner 58:249–254Google Scholar
  26. Mercier PHJ, Evans RJ, Rancourt DG (2005) Geometric crystal chemical models for structural analysis of micas and their stacking polytypes. Am Miner 90:382–398CrossRefGoogle Scholar
  27. Meunier A (2005) Clays. Springer, Berlin, pp 1–57Google Scholar
  28. Miyawaki R, Shimazaki H, Shigeoka M, Yokoyama K, Matsubara S, Yurimoto H (2011) Yangzhumingite, KMg2.5Si4O10F2, a new mineral in the mica group from Bayan Obo, Inner Mongolia, China. Eur J Miner 23:467–473CrossRefGoogle Scholar
  29. Nespolo M (2001) Perturbative theory of mica polytypism, role of the M2 layer in the formation of inhomogeneous polytypes. Clays Clay Miner 49(1):1–23CrossRefGoogle Scholar
  30. Nespolo M, Takeda H, Kogure T, Ferraris G (1999) Periodic intensity distribution (PID) of mica polytypes: symbolism, structural model orientation and axial settings. Acta Crystallogr Sect A 55:659–676CrossRefGoogle Scholar
  31. Pavese A, Ferraris G, Pischedda V, Radaelli P (2000) Further study of the cation ordering in phengite 3T by neutron powder diffraction. Miner Mag 64(1):11–18CrossRefGoogle Scholar
  32. Petersen EU, Essene EJ, Peacor DR, Valley JW (1982) Fluorine end-member micas and amphiboles. Am Miner 67:538–544Google Scholar
  33. Renner B, Lehmann G (1986) Correlation of angular and bond length distortions in TO4 units in crystals. Z Kristallogr 175:43–59Google Scholar
  34. Robinson K, Gibbs GV, Ribbe PH (1971) Quadriatic elongation-quantitative measure of distortion in coordination polyhedra. Science 172:567–570CrossRefGoogle Scholar
  35. Schingaro E, Lacalamita M, Scordari F, Brigatti MF, Pedrazzi G (2011) Crystal chemistry of Ti-rich fluorophlogopite from Presidente Olegario, Alto Paranaiba igneous province, Brazil. Am Miner 96:732–743CrossRefGoogle Scholar
  36. Schingaro E, Kullerud K, Lacalamita M, Mesto E, Scordari F, Zozulya D, Erambert M, Ravna EJK (2014) Yangzhumingite and phlogopite from the Kvaloya lamproite (North Norway): structure, composition and origin. Lithos 210–211:1–13CrossRefGoogle Scholar
  37. Scordari F, Schingaro E, Lacalamita M, Mesto E (2012) Crystal chemistry of trioctahedral micas-2M 1 from Bunyaruguru kamafugite (southwest Uganda). Am Miner 97:430–439CrossRefGoogle Scholar
  38. Scordari F, Schingaro E, Ventruti G, Nicotra E, Viccaro M, Tagliani SM (2013) Fluorophlogopite from Piano delle Concazze (Mt. Etna, Italy): crystal chemistry and implications for the crystallization conditions. Am Miner 98:1017–1025CrossRefGoogle Scholar
  39. Sheldrick GM (2003) SADABS, program for empirical absorption correction of area detector data. University of Göttingen, GermanyGoogle Scholar
  40. Siemens (2004) SMART, SAINT (version 7.23A). Siemens Analytical X-ray Instruments, MadisonGoogle Scholar
  41. Smith JV, Bailey SW (1963) Second review of Al-O ang Si-O tetrahedral distances. Acta Crystallogr A 16:801–811CrossRefGoogle Scholar
  42. Smith JV, Yoder HS (1956) Experimental and theoretical studies of the mica polymorphs. Miner Mag 31:209–235Google Scholar
  43. Sunagawa I, Endo Y, Daimon N, Tate I (1968) Nucleation, growth and polytypism of fluorophlogopite from the vapour phase. J Cryst Growth 3:751CrossRefGoogle Scholar
  44. Takeda H, Morosin B (1975) Comparison of observed and predicted structural parameters of mica at high temperature. Acta Crystallogr Sect B31:2444–2452CrossRefGoogle Scholar
  45. Takeda H, Ross M (1975) Mica polytypism-dissimilarities in crystal-structure of coexisting 1M and 2M 1 biotite. Am Miner 60:1030–1040Google Scholar
  46. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  47. Toraya H (1981) Distortions of octahedra and octahedral sheets in 1M micas and the relation to their stability. Z Kristallogr 157:173–190Google Scholar
  48. Toraya H, Iwai S, Marumo F, Daimon M, Kondo R (1976) Crystal-structure of tetrasilicic potassium fluor mica, KMg2.5Si4O10F2. Z Kristallogr 144(S):42–52CrossRefGoogle Scholar
  49. Toraya H, Iwai SI, Marumo F, Nishikawa T, Hirao M (1978) The crystal structure of synthetic mica, KMg2.75Si3.5Al0.5O10F2. Mineral J 9(4):210–220CrossRefGoogle Scholar
  50. Toraya H, Marumo F, Hiráo M (1983) Synthesis and the crystal structure of a manganoan fluoromica, K(Mg2.44Mn0.24)(Si3.82Mn0.18)O10F2. Mineral J 11(5):240–247CrossRefGoogle Scholar
  51. Valkenburg AV, Pike RG (1952) Synthesis of mica. J Res Natl Bureau Stand 48(5):360–369CrossRefGoogle Scholar
  52. Weiss Z, Rieder M, Chmielova M (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates. Eur J Mineral 4:665–682CrossRefGoogle Scholar
  53. Xu HF, Veblen DR (1995) Periodic and nonperiodic stacking in biotite from the Bingham Canyon porphyry copper-deposit, Utah. Clays Clay Miner 43(2):159–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aiqing Chen
    • 1
    • 2
  • Wei Tan
    • 1
  • Hongping He
    • 1
    • 2
    Email author
  • Guowu Li
    • 3
  • Xinye Wu
    • 3
  • Qi Tao
    • 1
  • Jianxi Zhu
    • 1
  1. 1.CAS Key Laboratory of Mineralogy and Metallogeny/ Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.China University of Geosciences (Beijing)BeijingChina

Personalised recommendations