Skip to main content

Advertisement

Log in

Depleted brittle mica structure determination in Ba-phlogopite glass–ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study concerns the bulk mica phase of a barium phlogopite glass–ceramic, with potential applications in Computer Aided Design and Computer Aided Manufacturing in dentistry, which has been studied in detail and characterized for the first time. A number of analytical techniques including powder X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectroscopy, electron micro-probe analysis (EMPA), single crystal XRD and Monte-Carlo methods have been used to determine the mica phase composition and crystallographic structure. This has led to the identification of a new species of trioctahedral interlayer deficient brittle mica with an ideal formula of Ba2/3Mg3(Si8/3Al4/3)O10F2. Monte-Carlo simulations of Si/Al cation ordering indicate that the (Si8/3Al4/3) tetrahedral composition is unique and energetically favoured over that of the original assumed mica phase of Ba0.5Mg3(Si3AlO10)F2. The general mica composition X0.5Mg3(Si3Al)O10F2 where X is a divalent interlayer cation; therefore, does not precipitate in brittle mica glass–ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoda SN, Beall GH (1982) J Am Ceram Soc 4:287

    CAS  Google Scholar 

  2. Uno T, Kasuga T, Nakajima T (1991) J Am Ceram Soc 74:3139

    Article  CAS  Google Scholar 

  3. Henry J, Hill RG (2003) J Non-Cryst Solids 319:1

    Article  CAS  Google Scholar 

  4. Henry J, Hill RG (2004) J Mater Sci 39:2499. doi:10.1023/B:JMSC.0000020016.18068.e6

    Article  CAS  Google Scholar 

  5. Chaysuwan D, Chongsaguan J, Bumrungvej T (2006) Proc of the Sixth Asian BioCeramics Symp. Asian Bioceramics, Bangkok, Thailand, p 29

    Google Scholar 

  6. Bentley PM, Kilcoyne SH, Bubb NL, Ritter C, Dewhurst CD, Wood DJ (2007) Biomed Mater 2:151

    Article  CAS  Google Scholar 

  7. Rietveld HM (1969) J Appl Cryst 2:65

    Article  CAS  Google Scholar 

  8. Ostrogorsky AG (1990) Meas Sci Technol 1:463

    Article  CAS  Google Scholar 

  9. Beurskens PT, Beurskens G, de Gelder R, Smits JMM, Garcia-Grander S, Gould RO (2008) Dirdif-2008 manual. Radboud University, Nijmegen, The Netherlands

    Google Scholar 

  10. Sheldrick GM (2008) Acta Cryst A 64:112

    Article  Google Scholar 

  11. Larson AC, Von Dreele RB (1985–2005) GSAS Manual. University of California, Los Alamos

  12. Klaus M, Lothas M, Mathias H (1992) Binder for metal or ceramic powder. US Patent Number 5098942

  13. Hillier S (1999) Clay Min 34:127

    Article  CAS  Google Scholar 

  14. McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1998) J Appl Cryst 32:36

    Article  Google Scholar 

  15. Momma K, Izumi F (2008) J Appl Cryst 41:653

    Article  CAS  Google Scholar 

  16. Gnos E, Armbruster T (2000) Am Min 85:242

    CAS  Google Scholar 

  17. Fleet ME (2003) Micas. The Geological Society, London, p 342

    Google Scholar 

  18. Altermatt UD, Brown ID (1987) Acta Cryst A 34:125

    Article  Google Scholar 

  19. Ohashi Y (1984) Phys Chem Min 10:217

    Article  CAS  Google Scholar 

  20. Downs RT, Palmer DC (1994) Am Min 79:9

    CAS  Google Scholar 

  21. Baur WH (1956) Acta Cryst 9:515

    Article  CAS  Google Scholar 

  22. Herrero CP, Sanz J, Serratosa JM (1986) J Phys C: Solid State Phys 19:4169

    Article  CAS  Google Scholar 

  23. Herrero CP, Gregorkiewitz M, Sanz J, Serratosa JM (1987) Phys Chem Min 15:84

    Article  CAS  Google Scholar 

  24. Herrero CP, Sanz J, Serratosa JM (1985) J Phys C: Solid State Phys 18:13

    Article  CAS  Google Scholar 

  25. Loewenstein W (1954) Am Min 39:92

    CAS  Google Scholar 

  26. Palin EJ, Dove MT, Redfern SAT, Bosenick A, Sainz-Diaz CI, Warren MC (2001) Phys Chem Min 28:534

    Article  CAS  Google Scholar 

  27. Rieder M, Cavazzini G, D’Yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S et al (1998) Can Min 36:905

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for financial support. Practical assistance was provided by Geoff Parr, University of Salford Analytical Services (UK), with XRD/SEM/EDS, Dr. Eric Condliffe, University of Leeds Institute for Materials Research (UK), with EMPA and Colin Kilner, University of Leeds (Chemistry), with the single crystal diffraction experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Broady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broady, S., Wood, D.J., Kilcoyne, S.H. et al. Depleted brittle mica structure determination in Ba-phlogopite glass–ceramics. J Mater Sci 47, 5298–5307 (2012). https://doi.org/10.1007/s10853-012-6415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6415-1

Keywords

Navigation