Skip to main content
Log in

Crystal structure and phase transition in noelbensonite: a multi-methodological study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal structure and the phase transition of noelbensonite ((Ba0.72Sr0.31Ca0.01)Σ1.05(Mn1.82Al0.16)Σ1.98[Si2O7](OH)2 ·H2O) were investigated by in situ single-crystal X-ray diffraction, ab initio simulations, and infrared spectroscopy. In contrast to previous assumptions, single-crystal X-ray diffraction data and molecular dynamic simulations at room temperature (RT) displayed the acentric space group P21 cn, a = 6.31303(2), b = 9.0977(3), c = 13.5820(4) Å, V = 779.73(4) Å3. This corresponds to the low-temperature (−118 °C) structure of lawsonite (CaAl2[Si2O7](OH)2·H2O) and to the phase of hennomartinite (SrMn+ 3 2[Si2O7](OH)2·H2O) below 95 °C. At 225 °C, the structure changed to space group Cmcm, which corresponds to that of hennomartinite at >245 °C and of lawsonite above 0 °C. In this structure the oxygen site of the H2O molecule showed positional disorder. Molecular dynamic simulations indicated that the splitting of this site reflects the disordered arrangement of the hydroxyl groups and the H2O molecule in the high-temperature modification. Infrared spectra collected at RT showed similarities with those of lawsonite. The bands at 3566 and 3517 cm− 1 and the two broader bands between 3300 and 2930 cm− 1 agree with the stretching frequencies of the hydrogen bond system as calculated from X-ray diffraction data and theoretical computations. Normal mode analysis of molecular dynamic trajectories allowed to identify the origin of vibration bands and polarization dependence of the IR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baur WH (1978) Crystal structure refinement of lawsonite. Am Mineral 63:311–315

    Google Scholar 

  • Brehm M, Kirchner B (2011) TRAVIS—a free analyzer and visualizer for monte carlo and molecular dynamics trajectories. J Chem Inf Model 51:2007–2023

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Cryst B 47:192–197

    Article  Google Scholar 

  • Churakov SV, Wunder B (2004) Ab-initio calculations of the proton location in topaz-OH, Al2SiO4(OH)2. Phys Chem Miner 31(3):131–141

    Article  Google Scholar 

  • Cockayne E, Levin I, Wu H, Llobet A (2013) Magnetic structure of bixbyite alpha-Mn2O3: a combined DFT+ U and neutron diffraction study. Phys Rev B87 (18): 1–11

    Google Scholar 

  • Coombs DS, Kawachi Y, Miura H, Chappell D (2004) Cerchiarite and Ca-bearing noelbensonite from Woods mine, New South Wales, Australia. Eur J Mineral 16:185–189

    Article  Google Scholar 

  • Ende M, Wunder B, Koch-Müller M, Pippinger T, Buth G, Giester G, Lengauer CL, Libowitzky E (2016) T-induced displacive phase transition of end-member Pb-lawsonite. Mineral Mag 80:249–267

    Article  Google Scholar 

  • Ferraris G, Ivaldi G (1988) Bond valence vs bond length in O⋯O hydrogen bonds. Acta Cryst B 44:341–344

    Article  Google Scholar 

  • Grimme S (2007) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1798

    Article  Google Scholar 

  • Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 58(7):3641–3662

    Article  Google Scholar 

  • Kawachi Y, Coombs DS, Miura H (1996) Noélbensonite, a new BaMn silicate of the lawsonite structure type, from Woods mine, New South Wales, Australia. Mineral Mag 60:369–374

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H hydrogen bond lengths in minerals. Monatshefte Chem 130: 1047–1059.

    Google Scholar 

  • Libowitzky E, Armbruster T (1995) Low-temperature phase transitions and the role of hydrogen bonds in lawsonite. Am Mineral 80:1277–1285

    Article  Google Scholar 

  • Libowitzky E, Armbruster T (1996) Lawsonite-type phase transitions in hennomartinite, SrMn2 [Si2O7](OH)2 ·H2O. Am Mineral 81:9–18

    Article  Google Scholar 

  • Libowitzky E, Rossman GR (1996) FTIR spectroscopy of lawsonite between 82 and 325 K. Am Mineral 81:1080–1091

    Article  Google Scholar 

  • Liebscher A, Dörsam G, Franz G, Wunder B, Gottschalk M (2010) Crystal chemistry of synthetic lawsonite solid-solution series CaAl2 [(OH)2/Si2O7] ·H2O–SrAl2 [(OH)2/Si2O7] ·H2O and the Cmcm-P21/m phase transition. Am Mineral 95:724–735

    Article  Google Scholar 

  • Lucchetti G, Cortesogno L, Palenzona A (1988) Low-temperature metamorphic mineral assemblages in Mn–Fe ores from Cerchiara mine (northern Apennine, Italy). Neues Jahrbuch für Mineralogie Monatshefte (8):367–383

  • Miyajima H, Matsubara S, Miyawaki R, Ito K (1999) Itoigawaite, a new mineral, the Sr analogue of lawsonite, in jadeite from the Itoigawa-Ohmi district, central Japan. Mineral Mag 63(6):909–916

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1997) Errata: generalized gradient approximation made simple. Phys Rev Lett 78(7): 1396 (Phys Rev Lett 77, 3865 (1996))

    Article  Google Scholar 

  • Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899

    Article  Google Scholar 

  • Salje EKH, Crossley S, Kar-Narayan S, Carpenter MA, Mathur ND (2011) Improper ferroelectricity in lawsonite CaAl2Si2O7(OH)2·H2O: hysteresis and hydrogen ordering. J Phys: Condens Matter 23:222202

    Google Scholar 

  • Salje EKH, Gofryk K, Safarik DJ, Lashley JC (2012) Order-parameter coupling in the improper ferroelectric lawsonite. J Phys Condens Matter 24:255901

    Article  Google Scholar 

  • Sheldrick GM (2008) Crystal structure refinement with SHELX. Acta Cryst A64:112–122

    Article  Google Scholar 

  • Sheldrick GM (2015) Crystal structure refinement with SHELX. Acta Cryst C71: 3–8

    Google Scholar 

  • VandeVondele J, Hutter J (2007) Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys 127:114105

    Article  Google Scholar 

  • VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167(2):103–128

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Alfons Berger for technical support during SEM–EDX analyses. Authors acknowledge access to the HPC resources at the University of Bern and the CRAY-XE at the Swiss Center of Scientific Computing at Lugano. The review and useful comments of Eugen Libowitzky and of an anonymous reviewer are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cametti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 8795 KB)

Supplementary material 2 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cametti, G., Armbruster, T., Hermann, J. et al. Crystal structure and phase transition in noelbensonite: a multi-methodological study. Phys Chem Minerals 44, 485–496 (2017). https://doi.org/10.1007/s00269-017-0876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0876-3

Keywords

Navigation