Garnets in the majorite–pyrope system: symmetry, lattice microstrain, and order–disorder of cations

Abstract

We present a systematic experimental study on the phase transition, lattice microstrain, and order–disorder of cations for garnets in the majorite–pyrope system. Polycrystalline gem-quality garnets were synthesized at high pressure and high temperature using a Kawai-type multi-anvil apparatus. A phase transition from a cubic to tetragonal structure is clearly observed for garnets with the majorite content of more than 74 mol % through X-ray diffraction (XRD) and Raman scattering studies. Microstrain of garnets, evaluated with the Williamson–Hall plot on XRD profiles, shows a nonlinear dependence of the garnet compositions. The variation of the XRD peak broadening suggests the lattice microstrain of these garnets may be associated with the local structural heterogeneities due to the substitution of different cations via the coupled substitution (Mg2+ + Si4+ = 2Al3+) in the garnet structure. The width variation of Raman scattering peaks indicates that cation disorder occurs in the garnet structure for intermediate compositions. It is found that intermediate garnets and end-members have a minimum of microstrain, while those between end-members and intermediate compositions possess a larger microstrain.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akaogi M, Akimoto S (1977) Pyroxene-garnet solid solution equilibria in the systems Mg4Si4O12–Mg3Al2Si3O12 and at high pressures and temperatures. Phys Earth Planet Inter 15:90–106

    Article  Google Scholar 

  2. Angel RJ, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800 °C. Am Mineral 74:509–512

    Google Scholar 

  3. Boffa Ballaran T, Carpenter MA (2003) Line broadening and enthalpy: some empirical calibrations of solid solution behaviour from IR spectra. Phase Transit 76:137–154

    Article  Google Scholar 

  4. Boffa Ballaran T, Carpenter MA, Geiger CA, Koziol AM (1999) Local structural heterogeneity in garnet solid solutions. Phys Chem Miner 26:554–569

    Article  Google Scholar 

  5. Bosenick A, Dove MT, Heine V, Geiger CA (2001) Scaling of thermodynamic mixing properties of garnet solid solutions. Phys Chem Miner 27:445–452

    Google Scholar 

  6. Dapiaggi M, Geiger CA, Artioli G (2005) Microscopic strain in synthetic pyrope–grossular solid solutions determined by synchrotron X-ray powder diffraction at 5 K: the relationship to enthalpy of mixing behavior. Am Mineral 90:506–509

    Article  Google Scholar 

  7. Du W, Clark SM, Walker D (2016) Excess mixing volume, microstrain, and stability of pyrope–grossular garnets. Am Mineral 101:193–204

    Article  Google Scholar 

  8. Freeman CL, Allan NL, van Westrenen W (2006) Local cation environments in the pyrope–grossular Mg3Al2Si3O12–Ca3Al2Si3O12 garnet solid solution. Phys Rev B 74:13420301–13420309

    Article  Google Scholar 

  9. Giesting PA, Hofmeister AM (2002) Thermal conductivity of disordered garnets from infrared spectroscopy. Phys Rev B 65:14430501–14430516

    Article  Google Scholar 

  10. Giesting PA, Hofmeister AM, Wopenka B, Gwanmesia GD, Jolli BL (2004) Thermal conductivity and thermodynamics of majoritic garnets: implications for the transition zone. Earth Planet Sci Lett 218:45–46

    Article  Google Scholar 

  11. Gwanmesia GD, Liu J, Chen G, Kesson S, Rigden SM, Liebermann RC (2000) Elasticity of pyrope (Mg3Al2Si3O12)–majorite (Mg4Si4O12) garnet solid solution. Phys Chem Miner 27:445–452

    Article  Google Scholar 

  12. Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12)–pyrope (Mg3Al2Si3O12) and garnet symmetry in the earth’s transition zone. Phys Chem Miner 24:206–221

    Article  Google Scholar 

  13. Hofmeister AM, Giesting PA, Wopenka B, Gwanmesia GD, Jolliff BL (2004) Vibrational spectroscopy of pyrope–majorite garnets: structure implications. Am Mineral 89:132–146

    Article  Google Scholar 

  14. Hunt SA, Dobson DP, Li L, Weidner DJ, Brodholt JP (2010) Relative strength of the pyrope–majorite solid solution and the flow-law of majorite containing garnets. Phys Earth Planet Inter 179:87–95

    Article  Google Scholar 

  15. Irifune T, Ringwood AE (1987) Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In: Manghnani MH, Syono Y (eds) High pressure research in mineral phys-ics. Terra Scientific, Tokyo

    Google Scholar 

  16. Irifune T, Koizumi T, Ando J (1996) An experimental study of the garnet–perovskite transformation in the system MgSiO3–Mg3Al2Si3O12. Phys Earth Planet Inter 96:147–157

    Article  Google Scholar 

  17. Kolesov BA, Geiger CA (1998) Raman spectra of silicate garnets. Phys Chem Miner 25:142–151

    Article  Google Scholar 

  18. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  Google Scholar 

  19. Li L, Weidner DJ, Brodholt J, Price GD (2007) The effect of cation-ordering on elastic properties of majorite: an ab initio study. Earth Planet Sci Lett 256:28–35

    Article  Google Scholar 

  20. Liu ZD, Irifune T, Greax S, Arimoto T, Shinmei T, Higo Y (2015) Elastic wave velocity of polycrystalline Mj80Py20 garnet to 21 GPa and 2000 K. Phys Chem Miner 42:213–222

    Article  Google Scholar 

  21. Liu ZD, Irifune T, Nishi M, Tange Y, Arimoto T, Shinmei T (2016) Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys Earth Planet Inter 257:18–27

    Article  Google Scholar 

  22. McMillan P, Akaogi M, Ohtani E, Williams Q, Nieman R, Sato R (1989) Cation disorder in garnets along the Mg4Si4O12–Mg3Al2Si3O12 join: an infrared, Raman, and NMR study. Phys Chem Miner 16:428–435

    Article  Google Scholar 

  23. Michel D, Collongues R, Jorba Y, Collongues R (1976) Study by Raman spectroscopy of order–disorder phenomena occurring in some binary oxides with fluorite-related structures. J Raman Spectrosc 5:163–180

    Article  Google Scholar 

  24. Nakatsuka A, Yoshiasa A, Yamanaka T, Ohtaka O, Katsura T, Ito E (1999) Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12–MgSiO3. Am Mineral 94:1135–1143

    Article  Google Scholar 

  25. Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  26. Parise JB, Wang Y, Gwanmesia GD, Zhang J, Sinelnikov Y, Chmielowski J, Weidner DJ, Liebermann RC (1996) The symmetry of garnets on the pyrope (Mg3Al2Si3O12)–majorite (MgSiO3) join. Geophys Res Lett 23:3799–3802

    Article  Google Scholar 

  27. Phillips BL, Howell DA, Kirkpatrick RJ, Gasparik T (1992) Investigation of cation order in MgSiO3-rich garnet using 29Si and 27A1 MAS NMR spectroscopy. Am Mineral 77:704–712

    Google Scholar 

  28. Rauch M, Keppler H, Häfner W, Poe B, Wokaun AA (1996) pressure-induced transition in MgSiO3-rich garnet revealed by Raman spectroscopy. Am Mineral 81:1289–1292

    Google Scholar 

  29. Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418

    Article  Google Scholar 

  30. Shannon RD (1976) Revised effective ionic radii. Acta Crystallogr A32:751–767

    Article  Google Scholar 

  31. Sinogeikin SV, Bass JD, B OʼNeill, Gasparik T (1997) Elasticity of tetragonal end-member majorite and solid solution in the system Mg4Si4O12–Mg3Al2Si3O12. Phys Chem Miner 24:115–121

    Article  Google Scholar 

  32. Wang Y, Gasparik T, Liebermann RC (1993) Modulated microstructure in synthetic majorite. Am Mineral 78:1165–1173

    Google Scholar 

  33. Williamson GK, Hall WH (1953) X-ray broadening from filled aluminium and wolfram. Acta Metall 1:22–31

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank J. B. Parise and Y. M. Zhou for their valuable suggestions for X-ray diffraction analysis. The authors thank T. Boffa Ballaran for her help in X-ray diffraction measurements. We thank both editor and two reviewers for their constructive comments. The present study is supported by the Grant-in-Aid for Scientific Research (S) by JSPS to T. Irifune (Grant No. 25220712).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhaodong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 238 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Du, W., Shinmei, T. et al. Garnets in the majorite–pyrope system: symmetry, lattice microstrain, and order–disorder of cations. Phys Chem Minerals 44, 237–245 (2017). https://doi.org/10.1007/s00269-016-0852-3

Download citation

Keywords

  • Garnet
  • Phase transition
  • Microstrain
  • Cation disorder
  • Cation substitution