Skip to main content
Log in

HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

High-resolution transmission electron microscopy was applied for the detailed nanostructural investigation of Popigai impact diamonds with the aim of revealing the nature of the amorphous carbon of the matrix. The successful application of two complementary specimen preparation methods, focused ion beam (FIB) milling and mechanical cleavage, allowed direct imaging of nanotwinned nanodiamond crystals embedded in a native amorphous carbon matrix for the first time. Based on its stability under the electron beam, native amorphous carbon can be easily distinguished from the amorphous carbon layer produced by FIB milling during specimen preparation. Electron energy loss spectroscopy of the native amorphous carbon revealed the dominance of sp 2-bonded carbon and the presence of a small amount of oxygen. The heterogeneous size distribution and twin density of the nanodiamond crystals and the structural properties of the native amorphous carbon are presumably related to non-graphitic (organic) carbon precursor material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barna A, Pecz B, Menyhard M (1998) Amorphisation and surface morphology development at low-energy ion milling. Ultramicroscopy 70:161–171

    Article  Google Scholar 

  • Berger SD, McKenzie DR, Martin PJ (1988) EELS analysis of vacuum arc deposited diamond-like films. Philos Mag Lett 57:285–290

    Article  Google Scholar 

  • Britun VF, Kurdyumov AV, Petrusha IA (2004) Diffusionless nucleation of lonsdaleite and diamond in hexagonal graphite under static compression. Powder Metall Met Ceram 43(1–2):87–93

    Article  Google Scholar 

  • Bruley J, Williams DB, Cuomo JJ, Pappas DP (1995) Quantitative near-edge structure analysis of diamond-like carbon in the electron microscope using a two-window method. J Microsc 180:22–32

    Article  Google Scholar 

  • Bundy FP, Kasper JS (1967) Hexagonal diamond—a new form of carbon. J Chem Phys 46:3437–3446

    Article  Google Scholar 

  • Calliari L, Filippi M, Laidani N, Anderle M (2006) The electronic structure of carbon films deposited in RF argon–hydrogen plasma. J Electron Spectrosc Relat Phenom 150:40–46

    Article  Google Scholar 

  • Chen GY, Stolojan V, Silva SRP, Herman H, Haq S (2005) Carbon spheres generated in dusty plasmas. Carbon 43:704–708

    Article  Google Scholar 

  • Croat TK, Floss C, Haas BA, Burchell MJ, Kearsley AT (2015) Survival of refractory presolar grain analogs during Stardust-like impact into Al foils: implications for Wild 2 presolar grain abundances and study of the cometary fine fraction. Meteorit Planet Sci 50(8):1378–1391. doi:10.1111/maps.12474

    Article  Google Scholar 

  • Daulton TL, Eisenhour DD, Bernatowicz TJ, Lewis RS, Buseck PR (1996) Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nanodiamonds. Geochem Cosmochem Acta 60:4853–4872

    Article  Google Scholar 

  • DeCarli PS (1995) Shock wave synthesis of diamond and other phases. In: Material Research Society symposium proceedings, vol 383, pp 21–31

  • Dobrzhinetskaya LF, Green HW, Weschler M, Darus M, Wang Y-C, Massonne HJ, Stockhert B (2003) Focused ion beam technique and transmission electron microscope studies of microdiamonds from the Saxonian Erzgebirge, Germany. Earth Planet Sci Lett 210:399–410

    Article  Google Scholar 

  • Dobrzhinetskaya LF, Wirth R, Green HW (2007) A look inside of diamond-forming media in deep subduction zones. PNAS. doi:10.1073/pnas.0609161104

    Google Scholar 

  • Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • El Goresy A, Gillet P, Chen M, Kunstler F, Graup G, Stahle V (2001) In situ discovery of shock-induced graphite-diamond transition in gneisses from the Ries crater, Germany. Am Mineral 86:611–621

    Article  Google Scholar 

  • El Goresy A, Dubrovinsky LS, Gillet P, Mostefaoui S, Graup G, Drakopoulos M, Simionovici AS, Swamy V, Masaitis VL (2003) A novel cubic, transparent and super-hard polymorph of carbon from the Ries and Popigai craters: implications to understanding dynamic-induced natural high-pressure phase transitions in the carbon system. In: Abstracts of lunar and planetary science, vol XXXIV, p 1016

  • Frondel C, Marvin UB (1967) Lonsdaleite, a new hexagonal polymorph of diamond. Nature 214:587–589

    Article  Google Scholar 

  • Garvie LAJ, Buseck PR (2004) Nanosized carbon-rich grains in carbonaceous chondrite meteorites. Earth Planet Sci Lett 224:431–439

    Article  Google Scholar 

  • Garvie LAJ, Németh P, Buseck PR (2014) Transformation of graphite to diamond via a topotactic mechanism. Am Mineral 99:531–538

    Article  Google Scholar 

  • Hainschwang T, Notari F, Fritsch E (2015) Natural lonsdaleite and CO2 rich diamonds. In: 34th IGC 2015—Vilnius, Lithuania, Proceedings book pp 30–31

  • Harris PJF (2004) Fullerene-related structure of commercial glassy carbons. Philos Mag 11:3159–3167

    Article  Google Scholar 

  • Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y (2014) Nanotwinned diamond with unprecedented hardness and stability. Nature 510:250–253

    Article  Google Scholar 

  • Karczemska AT (2010) Diamonds in meteorites—Raman mapping and cathodoluminescence studies. J Achiev Mater Manuf Eng 43(1):94–107

    Google Scholar 

  • Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M (2011) Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat Mater 10:693–697

    Article  Google Scholar 

  • Kim MS, Kim HG (2006) Preparation and observation of an artifact-free Ge2Sb2Te5 TEM specimen by the small angle cleavage technique. Mater Charact 56:245–249

    Article  Google Scholar 

  • Kis VK, Pósfai M, Lábár JL (2006) Nanostructure of atmospheric soot particles. Atmos Environ 40:5533–5542

    Article  Google Scholar 

  • Korochantsev AV (2004) Shock transformation of bitumens: application to organic matter of meteorites and impactites. PhD thesis report, Moscow, 2004, 27 p (in Russian)

  • Kurdyumov AV, Britun VF, Yarosh VV, Danilenko AI, Zelyavskii VB (2012) The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond. J Superhard Mater 34(1):19–27

    Article  Google Scholar 

  • Kvasnytsya V, Wirth R (2013) Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study. Diam Relat Mater 32:7–16

    Article  Google Scholar 

  • Langenhorst F, Shafranovsky G, Masaitis VL (1998) A comparative study of impact diamonds from the Popigai, Ries, Sudbury, and Lappajarvi craters. Meteorit Planet Sci 33(4):A90–A91

    Google Scholar 

  • Lapke C, Schmitt RT, Kenkmann T, Stöfflet D (2000) Raman microspectometry of impact diamonds from the Ries crater, Germany. Meteorit Planet Sci 35(5):A95

    Google Scholar 

  • Martirosyan OV (2014) Factors and mechanisms of structural evolution of organic mineraloids. Abstract of doctoral thesis. Syktyvkar, 38 p (in Russian)

  • Masaitis VL (2013) Impact diamonds of the Popigai Astrobleme: main properties and practical use. Geol Ore Depos 55(8):607–612

    Article  Google Scholar 

  • Masaitis VL, Futergendler SI, Gnevushev MA (1972) Diamonds in impactites of the Popigai meteoritic crater. Zap Vses Mineral Obshestva 101(1):108–112 (in Russian)

    Google Scholar 

  • Masaitis VL, Mikhailov MV, Selivanovskaya TV (1975) The Popigai meteorite crater. Nauka Press, Moscow, p 124 (in Russian)

  • Masaitis VL, Shafranovsky GI, Yezersky VA, Reshetnyak NB (1990) Impact diamonds in ureilites and impactites. Meteoritika 49:180–195 (in Russian)

    Google Scholar 

  • Masaitis VL, Mashchak MS, Raikhlin AI, Shafranovsky GI, Selivanovskaya TV (1998) Diamondiferous impactites of Popigai astrobleme. VSEGEI Press, Saint-Petersburg, p 169 (in Russian)

  • Ohfuji H, Okimoto S, Kunimoto T, Isobe F, Sumiya H, Komatsu K, Irifune T (2012) Influence of graphite crystallinity on the microtexture of nano-polycrystalline diamond obtained by direct conversion. Phys Chem Minerals 39:543–552

    Article  Google Scholar 

  • Ohfuji H, Irifune T, Litasov KD, Yamashita T, Isobe F, Afanasiev VP, Pokhilenko NP (2015) Natural occurrence of pure nano- polycrystalline diamond from impact crater. Sci Rep 5:14702. doi:10.1038/srep14702

    Article  Google Scholar 

  • Palchik N, Vishnevsky S (2010) The Ries impact diamonds: their spectroscopy, co-existing phases and origin. In: Nördlingen Ries Crater Workshop, p 7007

  • Shindo D, Musashi T, Ikematsu Y, Murakami Y, Nakamura N, Chiba H (2005) Characterization of DLC films by EELS and electron holography. J Electron Microsc 54(1):11–17

    Article  Google Scholar 

  • Shumilova T, Kis V, Masaitis V, Isaenko S, Makeev B (2014a) Onion-like carbon in impact diamonds from Popigai astrobleme. Eur J Mineral 26:267–277

    Article  Google Scholar 

  • Shumilova T, Kis V, Masaitis V, Tkachev S, Isaenko S, Makeev B (2014b) Nanostructure of Popigai impact diamonds by HRTEM, SEM, and AFM studies. Abstract booklet 92nd Annual Meeting of the German Mineralogical Society (DMG). Jena, Germany, 21–24 Sept 2014, pp 379–380

  • Smith DC, Godard G (2009) UV and VIS Raman spectra of natural lonsdaleites: towards a recognised standard. Spectrochim Acta A Mol Biomol Spectrosc 73:428–435

    Article  Google Scholar 

  • Stroud RM, Chisholm MF, Heck PR, Alexander CMO, Nittler LR (2011) Supernova shockwave-induced co-formation of glassy carbon and nanodiamond. Astrophys J Lett 738(2):L27. doi:10.1088/2041-8205/738/2/L27

    Article  Google Scholar 

  • Sumiya H, Irifune T (2008) Microstructure and mechanical properties of high- hardness nano-polycrystalline diamonds. SEI Tech Rev 66:85–91

    Google Scholar 

  • Sumiya H, Irifune T, Kurio A, Sakamoto S, Inoue T (2004) Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. J Mater Sci 396:445–450

    Article  Google Scholar 

  • Terranova ML, Rossi M, Sessa V, Vitali G (1996) Influence of different carbon structures on diamond synthesis by chemical vapour deposition. Phys Stat Sol A 154:127–140

    Article  Google Scholar 

  • Val’ter AA, Eremenko GK, Kvasnitsa VN, Polkanov Yu A (1992) Shock metamorphogenic carbon minerals. Naukova Dumka, Kiev, 171 p (in Russian)

  • Vishnevsky SA (1994) The suevite megabreccia: a new type of explosion cloud deposits at the Popigai astroblema. 1. General characteristics. Novosibirsk, 1994, 66 p (Preprint, Institute of mineralogy and petrology SB RAS) (in Russian)

  • Vishnevsky SA (2007) Astroblems. Novosibirsk, Nonparel, 288 p (in Russian)

  • Yelisseyev A, Meng GS, Afanasyev V, Pokhilenko N, Pustovarov V, Isakova A, Lin ZS, Lin HQ (2013) Optical properties of impact diamonds from the Popigai astrobleme. Diam Relat Mater 37:8–16

    Article  Google Scholar 

  • Yezerskii VA (1986) Gyperbaritic polymorphs formed at shock-transformed coals. Zap Vses Mineral Obshestva 115(1):26–33 (in Russian)

    Google Scholar 

  • Yusa H (2002) Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diam Relat Mater 11:87–91

    Article  Google Scholar 

Download references

Acknowledgments

VKK was supported by the János Bolyai Postdoctoral Fellowship of the Hungarian Academy of Sciences. Suggestions of the two anonymous referees are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoria K. Kis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kis, V.K., Shumilova, T. & Masaitis, V. HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix. Phys Chem Minerals 43, 661–670 (2016). https://doi.org/10.1007/s00269-016-0825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0825-6

Keywords

Navigation