Skip to main content
Log in

Morphology and structure of diamond-like carbon film induced by picosecond laser ablation

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Raman spectroscopy was performed to investigate the laser-induced microscopic structural changes in diamond-like carbon known as tetrahedral amorphous carbon. Coarse laser-induced periodic surface structures (LIPSSs) at the center of the crater and fine LIPSSs at the upper and lower peripheral regions of the ablated crater were formed via laser irradiation. An analysis of the Raman spectra via mapping measurements around the periphery of the crater demonstrated an increase in defect density occurred without morphological or structural changes. In irradiated areas with a higher local fluence, clustering and crystallization of sp2 occurred. The relationship between the crystalline structural changes and the local fluence was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. von der Linde, K. Sokolowski-Tinten, The physical mechanisms of short-pulse laser ablation. Appl. Surf. Sci. (2000). https://doi.org/10.1016/S0169-4332(99)00440-7

    Article  Google Scholar 

  2. B.N. Chichkov, C. Momma, S. Nolte, F.Y. Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A (1996). https://doi.org/10.1007/BF01567637

    Article  Google Scholar 

  3. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B.N. Chichkov, Towards nanostructuring with femtosecond laser pulses. Appl. Phys. A (2003). https://doi.org/10.1007/s00339-003-2110-z

    Article  Google Scholar 

  4. G. Miyaji, K. Miyazaki, Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses. Opt. Expr. (2008). https://doi.org/10.1364/oe.16.016265

    Article  Google Scholar 

  5. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Femtosecond laser ablation of silicon–modification thresholds and morphology. Appl. Phys. A. 74, 19–25 (2002). https://doi.org/10.1007/s003390100893

    Article  ADS  Google Scholar 

  6. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 4 (2012). https://doi.org/10.2351/1.4712658

    Article  Google Scholar 

  7. N. Yasumarua, H. Kasashima, E. Sentoku, H. Funabora, R. Tominaga, T. Harigai, H. Takikawa, Corrosion performance of DLC coatings with laser-induced graphitized periodic surface structure. Diam. Relat. Mater. (2020). https://doi.org/10.1016/j.diamond.2020.108046

    Article  Google Scholar 

  8. N. Yasumaru, E. Sentokua, T. Toya, R. Tominaga, T. Harigai, H. Takikawa, T. Tanimoto, Laser-induced graphitized periodic surface structure formed on tetrahedral amorphous carbon films. Diam. Relat. Mater. (2020). https://doi.org/10.1016/j.diamond.2020.107909

    Article  Google Scholar 

  9. K. Miyazaki, G. Miyaji, Mechanism and control of periodic surface nanostructure formation with femtosecond laser pulses. Appl. Phys. A. (2014). https://doi.org/10.1007/s00339-013-8130-4

    Article  Google Scholar 

  10. F. Costache, S.K. Kouteva-Arguirova, J. Reif, Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation. Appl. Phys. A. 79, 1429–1432 (2004). https://doi.org/10.1007/s00339-004-2803-y

    Article  ADS  Google Scholar 

  11. M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, S. Hashimoto, Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC. Appl. Phys. A. 99, 23–27 (2010). https://doi.org/10.1007/s00339-010-5569-4

    Article  ADS  Google Scholar 

  12. T. Tomita, T. Okada, H. Kawahara, R. Kumai, S. Matsuo, S. Hashimoto, M. Kawamoto, M. Yamaguchi, S. Ueno, E. Shindou, A. Yoshida, Microscopic analysis of carbon phases induced by femtosecond laser irradiation on single-crystal SiC. Appl. Phys. A. 100, 113–117 (2010). https://doi.org/10.1007/s00339-010-5786-x

    Article  ADS  Google Scholar 

  13. P. Mishra, K.P. Jain, First- and second-order Raman scattering in nanocrystalline silicon. Phys. Rev. B. (2001). https://doi.org/10.1103/PhysRevB.64.073304

    Article  Google Scholar 

  14. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. A Math. Phys. Eng. Sci. 362, 2477–2512 (2004). https://doi.org/10.1098/rsta.2004.1452

    Article  ADS  Google Scholar 

  15. J. Bonse, K.-W. Brzezinka, A.J. Meixner, Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy. Appl. Surf. Sci. 221, 215–230 (2004). https://doi.org/10.1016/S0169-4332(03)00881-X

    Article  ADS  Google Scholar 

  16. L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, W. Li, Control of size and shape of nc-Si in a-SiNx/aSi: H multilayers by laser induced constrained crystallization. Appl. Phys. A. 77, 485–489 (2003). https://doi.org/10.1007/s00339-002-1473-x

    Article  ADS  Google Scholar 

  17. K. Wu, X.Q. Yan, M.W. Chen, In situ Raman characterization of reversible phase transition in stress-induced amorphous silicon. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2779933

    Article  Google Scholar 

  18. B. Ghosh, N. Shirahata, Influence of oxidation on temperature-dependent photoluminescence properties of hydrogen-terminated silicon nanocrystals. Curr. Comput.-Aided Drug Des. 10, 143 (2020). https://doi.org/10.3390/cryst10030143

    Article  Google Scholar 

  19. T. Takahashi, S. Tani, R. Kuroda, Y. Kobayashi, Precision measurement of ablation thresholds with variable pulse duration laser. Appl. Phys. A 126, 582 (2020). https://doi.org/10.1007/s00339-020-03754-5

    Article  ADS  Google Scholar 

  20. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 20 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted at the Institute for Solid State Physics, University of Tokyo. It was supported by the AMADA FOUNDATION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yamaguchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takabayashi, K., Takahashi, T., Tsuchiya, E. et al. Morphology and structure of diamond-like carbon film induced by picosecond laser ablation. Appl. Phys. A 128, 850 (2022). https://doi.org/10.1007/s00339-022-05980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05980-5

Keywords

Navigation