Skip to main content

Advertisement

Log in

Thermal equation of state of natural tourmaline at high pressure and temperature

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10−5 K−1 and temperature derivative of the bulk modulus (∂K/∂T) P  = −0.009 (6) GPa K−1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10−5 K−1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10−5 K−1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angel RJ (2000) Equations of state. Rev Miner Geochem 41:35–59

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Angel RJ, Gonzalez-Platas J, Alvaro M (2014) Eosfit7c and a fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie-Crystalline Materials 229:405–419

  • Bass JD, Liebermann RC, Weidner DJ, Finch SJ (1981) Elastic properties from acoustic and volume compression experiments. Phys Earth Planet Inter 25:140–158

    Article  Google Scholar 

  • Bebout GE, Nakamura E (2003) Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology 31:407–410

    Article  Google Scholar 

  • Bebout GE, Ryan JG, Leeman WP (1993) B-be systematics in subduction-related metamorphic rocks: characterization of the subducted component. Geochim Cosmochim Acta 57:2227–2237

    Article  Google Scholar 

  • Bina CR, Navrotsky A (2000) Possible presence of high-pressure ice in cold subducting slabs. Nature 408:844–847

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824

    Article  Google Scholar 

  • Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Phinney FJ, Ryerson DL (1998a) Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141

    Article  Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998b) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347

    Article  Google Scholar 

  • Burt JB, Ross NL, Angel RJ, Koch M (2006) Equations of state and structures of andalusiteto 9.8 GPa and sillimanite to 8.5 GPa. Am Miner 91:319–326

    Article  Google Scholar 

  • Busigny V, Bebout GE (2013) Nitrogen in the silicate earth: speciation and isotopic behavior during mineral-fluid interactions. Elements 9:353–358

    Article  Google Scholar 

  • Chan LH, Leeman WP, You CF (1999) Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids. Chem Geol 160:255–280

    Article  Google Scholar 

  • Chan LH, Leeman WP, You CF (2002) Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem Geol 182:293–300

    Article  Google Scholar 

  • Desbois G, Ingrin J (2007) Anisotropy of hydrogen diffusion in tourmaline. Geochim Cosmochim Acta 71:5233–5243

    Article  Google Scholar 

  • Donnay G (1977) Structural mechanism of pyroelectricity in tourmaline. Acta Crystallogr A 33:927–932

    Article  Google Scholar 

  • Dutrow BL, Henry DJ (2011) Tourmaline: a geologic dvd. Elements 7:301–306

    Article  Google Scholar 

  • Fan D, Zhou W, Wei S, Liu Y, Ma M, Xie H (2010) A simple external resistance heating diamond anvil cell and its application for synchrotron radiation X-ray diffraction. Rev Sci Instrum 81:053903

    Article  Google Scholar 

  • Fan D, Wei S, Xie H (2013) An in situ high-pressure X-ray diffraction experiment on hydroxyapophyllite. Chin Phys B 22:010702

    Article  Google Scholar 

  • Fan D, Xu J, Kuang Y, Li X, Li Y, Xie H (2015) Compressibility and equation of state of beryl (Be3Al2Si6O18) by using a diamond anvil cell and in situ synchrotron X-ray diffraction. Phys Chem Miner 42:529–539

    Article  Google Scholar 

  • Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186

    Article  Google Scholar 

  • Gao J, Zhu F, Lai XJ, Huang R, Qin S, Chen DL, Liu J, Zheng LR, Wu X (2014) Compressibility of a natural smithsonite ZnCO3up to 50 GPa. High Press Res 34:89–99

    Article  Google Scholar 

  • Hammersley J (1996) Fit2d report. European Synchrotron Radiation Facility, Grenoble

    Google Scholar 

  • Hawthorne FC, Dirlam DM (2011) Tourmaline the indicator mineral: from atomic arrangement to Viking navigation. Elements 7:307–312

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Anovitz LM, Grew ES (eds) Boron: mineralogy, petrology and geochemistry, 33. Rev Mineral, Mineralogical Society of America, Chantilly, pp 503–557

    Google Scholar 

  • Henry DJ, Kirkland BL, Kirkland DW (1999) Sector-zoned tourmaline from the cap rock of a salt dome. Eur J Miner 11:263–280

    Article  Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Hughes JM, Ertl A, Dya MD, Grew ES, Shearer CK, Yates MG, Guidotti CV (2000) Tetrahedrally coordinated boron in a tourmaline: Boron-rich olenite from Stoffhutte, Koralpe, Austria. Can Miner 38:861–868

    Article  Google Scholar 

  • Jacobsen SD (2006) Effect of water on the equation of state of nominally anhydrous minerals. Rev Miner Geochem 62:321–342

    Article  Google Scholar 

  • Jiang SY, Palmer MR, Yeats CJ (2002) Chemical and boron isotopic compositions of tourmaline from the archean big bell and mount gibson gold deposits, Murchison Province, Yilgarn Craton, Western Australia. Chem Geol 188:229–247

    Article  Google Scholar 

  • Kawakami T (2001) Tourmaline breakdown in the migmatite zone of the Ryoke metamorphic belt, SW Japan. J Metamorph Geol 19:61–75

    Article  Google Scholar 

  • Kincaid C, Sacks IS (1997) Thermal and dynamical evolution of the upper mantle in subduction zones. J Geophys Res 102:12295–12315

    Article  Google Scholar 

  • Krosse S (1995) Hochdrucksynthese, stabilität und eigenschaften der borsilikate dravit und kornerupin, sowie darstellung und stabilitätsverhalten eines neuen mg-al-borates. Unpublished Ph.D. thesis, Ruhr-Universität Bochum, 131 pp

  • Lager GA, Downs RT, Origlieri M, Garoutte R (2002) High-pressure single-crystal X-ray diffraction study of katoite hydrogarnet: evidence for a phase transition from Ia3d→ I4̅3d symmetry at 5 GPa. Am Mineral 87:642–647

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR, pp 86–748

  • Le Bail A, Duroy H, Fourquet J (1988) Ab-initio structure determination of lisbwo6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  • Lin JF, Tsuchiya T (2008) Spin transition of iron in the Earth’s lower mantle. Phys Earth Planet Inter 170:248–259

    Article  Google Scholar 

  • Li H, Qin S, Zhu X, Liu J, Li X, Wu X, Wu Z (2004) In situ high-pressure X-ray diffraction of natural tourmaline. Nuclear Tech 27:919–922 (in Chinese)

    Google Scholar 

  • Liu J, Lin JF, Mao Z, Prakapenka VB (2014) Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature. Am Miner 99:84–93

    Article  Google Scholar 

  • Marschall HR, Jiang SY (2011) Tourmaline isotopes: no element left behind. Elements 7:313–319

    Article  Google Scholar 

  • Marschall HR, Korsakov AV, Luvizotto GL, Nasdala L, Ludwig T (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. J Geol Soc Lond 166:811–823

    Article  Google Scholar 

  • Miletich R, Gatta GD, Willi T, Mirwald PW, Lotti P, Merlini M, Rotiroti N, Loerting T (2014) Cordierite under hydrostatic compression: anomalous elastic behavior as a precursor for a pressure-induced phase transition. Am Mineral 99:479–493

    Article  Google Scholar 

  • Moriguti T, Shibata T, Nakamura E (2004) Lithium, boron and lead isotope and trace element systematics of quaternary basaltic volcanic rocks in northeastern japan: mineralogical controls on slab-derived fluid composition. Chem Geol 212:81–100

    Article  Google Scholar 

  • Nakamura E, Campbell IH, Sun S (1985) The influence of subduction processes on the geochemistry of japanese alkaline basalts. Nature 316:55–58

    Article  Google Scholar 

  • Nakano T, Nakamura E (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys Earth Planet Inter 127:233–252

    Article  Google Scholar 

  • Nesse WD (2000) Introduction to mineralogy. Oxford University Press, New York

    Google Scholar 

  • Nestola F, Ballaran TB, Angel RJ, Zhao J, Ohashi H (2010) High-pressure behavior of Ca/Na clinopyroxenes: the effect of divalent and trivalent 3d-transition elements. Am Miner 95:832–838

    Article  Google Scholar 

  • Nishihara Y, Takahashi E, Matsukage K, Kikegawa T (2003) Thermal equation of state of omphacite. Am Miner 88:80–86

    Article  Google Scholar 

  • Ota T, Kobayashi K, Katsura T, Nakamura E (2008a) Tourmaline breakdown in a pelitic system: implications for boron cycling through subduction zones. Contrib Mineral Petrol 155:19–32

    Article  Google Scholar 

  • Ota T, Kobayashi K, Kunihiro T, Nakamura E (2008b) Boron cycling by subducted lithosphere; insights from diamondiferous tourmaline from the kokchetav ultrahigh-pressure metamorphic belt. Geochim Cosmochim Acta 72:3531–3541

    Article  Google Scholar 

  • Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103:434–451

    Article  Google Scholar 

  • Pandey CS, Schreuer J (2012) Elastic and piezoelectric constants of tourmaline single crystals at non-ambient temperatures determined by resonant ultrasound spectroscopy. J Appl Phys 111:013516

    Article  Google Scholar 

  • Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical characteristics of island-arc basalts: implications for mantle sources. Chem Geol 30:227–256

    Article  Google Scholar 

  • Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci 30:207–235

    Article  Google Scholar 

  • Prencipe M, Nestola F (2005) Quantum-mechanical modeling of minerals at high pressure. The role of the Hamiltonian in a case study: the beryl (Al4Be6Si12O36). Phys Chem Miner 32:471–479

    Article  Google Scholar 

  • Robbins CR, Yoder HS (1962) Stability relations of dravite, a tourmaline. Carnegie Institute of Washington Yearbook 61:106–108

    Google Scholar 

  • Rosenberg PE, Foit FF (1979) Synthesis and characterization of alkali-free tourmaline. Am Miner 64:180–186

    Google Scholar 

  • Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741

    Article  Google Scholar 

  • Ryan JG, Langmuir CH (1993) The systematics of boron abundances in young volcanic rocks. Geochim Cosmochim Acta 57:1489–1498

    Article  Google Scholar 

  • Saunders AD, Tarney J, Weaver SD (1980) Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth Planet Sci Lett 46:344–360

    Article  Google Scholar 

  • Schreyer W, Wodara U, Marler B, Seifert F, Robert JL (2000) Synthetic tourmaline (olenite) with excess boron replacing silicon in the tetrahedral site I. Synthesis conditions, chemical and spectroscopic evidence. Eur J Miner 12:529–541

    Article  Google Scholar 

  • Seyfried WE, Janecky DR, Mottl MJ (1984) Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron. Geochim Cosmochim Acta 48:557–569

    Article  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767

    Article  Google Scholar 

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry, vol 33 of Rev Mineral, 2nd edn., chap 11. Mineralogical Society of America, Washington, DC, pp 559–644

  • Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elements 7:321–326

    Article  Google Scholar 

  • Smyth JR, Frost DJ, Nestola F (2005) Hydration of olivine and the earth’s deep water cycle. Geochim Cosmochim Acta 69:A746

    Google Scholar 

  • Tatli A, Pavlovic AS (1988) Thermal-expansion of tourmaline single-crystals from 80 to 300 k. Phys Rev B 38:10072–10074

    Article  Google Scholar 

  • Taylor RP, Ikingura JR, Fallick AE, Huang Y, Watkinson DH (1992) Stable isotope compositions of tourmalines from granites and related hydrothermal rocks of the Karagwe-Ankolean belt, northwest Tanzania. Chem Geol 94:215–227

    Article  Google Scholar 

  • Taylor BE, Palmer MR, Slack JF (1999) Mineralizing fluids in the kidd creek massive sulfide deposit, Ontario: evidence from oxygen, hydrogen, and boron isotopes in tourmaline. In: Hannington MD, Barrie CT (eds) The giant Kidd creek volcanogenic massive sulfide deposit, western Abitibi Subprovince, Canada. Economic Geology Monograph, pp 389–414

  • Toby BH (2001) Expgui, a graphical user interface for gsas. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • van Hinsberg VJ, Schumacher JC (2009) The geothermobarometric potential of tourmaline, based on experimental and natural data. Am Mineral 94:761–770

    Article  Google Scholar 

  • van Hinsberg VJ, Henry DJ, Dutrow BL (2011a) Tourmaline as a petrologic forensic mineral: a unique recorder of its geologic past. Elements 7:327–332

    Article  Google Scholar 

  • van Hinsberg VJ, Henry DJ, Marschall HR (2011b) Tourmaline: an ideal indicator of its host environment. Can Miner 49:1–16

    Article  Google Scholar 

  • Vinet P, Ferrante J, Smith JR, Rose JH (1986) A universal equation of state for solids. J Phys C Solid State Phys 19:L467

    Article  Google Scholar 

  • Vinet P, Ferrante J, Rose JH, Smith JR (1987) Compressibility of solids. J Geophys Res 92:9319–9325

    Article  Google Scholar 

  • Von Goerne G, Franz G, Wirth R (1999) Hydrothermal synthesis of large dravite crystals by the chamber method. Eur J Miner 11:1061–1077

    Article  Google Scholar 

  • Werding G, Schreyer W (1996) Experimental studies on borosilicates and selected borates. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry in the earth’s crust. Rev Mineral 33:117–163

  • Wunder B, Berryman E, Plessen B, Rhede D, Koch-Mueller M, Heinrich W (2015) Synthetic and natural ammonium-bearing tourmaline. Am Mineral 100:250–256

    Article  Google Scholar 

  • Xu J, Ma M, Wei S, Hu X, Liu Y, Liu J, Fan D, Xie H (2014) Equation of state of adamite up to 11 GPa: a synchrotron X-ray diffraction study. Phys Chem Miner 41:547–554

    Article  Google Scholar 

  • Xu J, Kuang Y, Zhang B, Liu Y, Fan D, Zhou W, Xie H (2015) High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and raman spectroscopy. Phys Chem Miner 41:805–816

    Article  Google Scholar 

  • Ye Y, Jacobsen SD, Mao Z, Duffy TS, Hirner SM, Smyth JR (2015) Crystal structure, thermal expansivity, and elasticity of OH-chondrodite: trends among dense hydrous magnesium silicates. Contrib Mineral Petrol 169:1–15

    Article  Google Scholar 

  • Zack T, Tomascak PB, Rudni RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290

    Article  Google Scholar 

  • Zhang J, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates: deviations from empirical relations. Am Miner 84:861–870

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 41374107 and 41274105), and the Youth Innovative Technology Talents program of Institute of geochemistry, Chinese academy of Sciences (2013, to Dawei Fan). The experimental work was performed at 4W2 beamline of BSRF, which was supported by Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20 and KJCX2-SW-N03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Kuang, Y., Zhang, B. et al. Thermal equation of state of natural tourmaline at high pressure and temperature. Phys Chem Minerals 43, 315–326 (2016). https://doi.org/10.1007/s00269-015-0796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0796-z

Keywords

Navigation