Skip to main content
Log in

High-temperature phase transition and local structure of a hydrous anorthoclase

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The in situ Raman spectra of a hydrous anorthoclase at temperatures of 20–800 °C have been measured using a LABRAM-HR spectrometer and Linkam TS 1500 heating stage. The frequencies of modes at 54, 99, 130 and 162 cm−1 related to M–O vibrations decrease sharply and then increase drastically or keep steady at temperatures above 200 °C. A knee point can be clearly seen at about 200 °C for those modes. The frequency of the mode at 282 cm−1 shows little temperature dependence. However, for the two strongest modes at 471 and 512 cm−1, the frequencies decrease linearly with increasing temperature. From evolution of the frequencies of modes at 54, 99, 130 and 162 cm−1 with temperature, the following conclusions can be drawn: (1) The distance of the local M–O bond shortens rather than lengthens at temperatures above 200 °C; (2) The abrupt changes of the local structure of M site induce a collapse of the framework structure and displacive phase transition at 200 °C; and (3) The H atoms incorporated in anorthoclase are located at the M site. These results are indicative for the structure and properties of anorthoclase at deep earth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan DR, Angel RJ (1997) A high-pressure structural study of microcline (KAlSi3O8) to 7 GPa. Eur J Mineral 9:263–275

    Article  Google Scholar 

  • Behrens H, Müller G (1995) An infrared spectroscopic study of hydrogen feldspar (HAlSi3O8). Mineral Mag 59:15–24

    Article  Google Scholar 

  • Bendel V, Schmidt BC (2008) Raman spectroscopic characterisation of disordered alkali feldspars along the join KAlSi3O8-NaAlSi3O8: application to natural sanidine and anorthoclase. Eur J Mineral 20:1055–1065

    Article  Google Scholar 

  • Benusa MD, Angel RJ, Ross NL (2005) Compression of albite, NaAlSi3O8. Am Mineral 90:1115–1120

    Article  Google Scholar 

  • Berry AJ, Hermann J, O’Neill HSC, Foran GJ (2005) Fingerprinting the water site in mantle olivine. Geology 33:869–872

    Article  Google Scholar 

  • Berry AJ, O’Neill HSC, Hermann J, Scott DR (2007) The infrared signature of water associated with trivalent cations in olivine. Earth Planet Sci Lett 261:134–142

    Article  Google Scholar 

  • Bozhilov KN, Green HW II, Dobrzhinetskaya LF (1999) Clinoenstatite in alpe arami peridotite: additional evidence of very high pressure. Science 284:128–132

    Article  Google Scholar 

  • Daniel I, Gillet P, Ghose S (1995) A new high-pressure phase transition in anorthite (CaAl2Si2O8) revealed by Raman spectroscopy. Am Mineral 80:645–648

    Google Scholar 

  • Deng LW, Liu X, Liu H, Dong JJ (2010) High-pressure phase relations in the composition of albite NaAlSi3O8 constrained by an ab initio and quasi-harmonic Debye model, and their implications. Earth Planet Sci Lett 298:427–433

    Article  Google Scholar 

  • Deng LW, Liu X, Liu H, Zhang YG (2011) A first-principles of study of the phase transition from Holl-I to Holl-II in the composition KAlSi3O8. Am Mineral 96:974–982

    Article  Google Scholar 

  • Downs RT, Hazen RM, Finger LW (1994) The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al–Si ordering. Am Mineral 79:1042–1052

    Google Scholar 

  • Dupre B, Allegre CJ (1983) Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303:142–145

    Article  Google Scholar 

  • Freeman JJ, Wang A, Kuebler KE, Haskin LA (2003) Raman spectroscopic characterization of the feldspars-implications for in situ surface mineral characterization in planetary exploration. 34th Lunar and Planetary Science Conference, Abstract No. 1676

  • Freeman JJ, Wang A, Kuebler KE, Jolliff BL, Haskin LA (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can Mineral 46:1477–1500

    Article  Google Scholar 

  • Harlow G (1982) The anorthoclase structures: the effects of temperature and composition. Am Mineral 67:975–996

    Google Scholar 

  • Hayward SA, Salje EKH (1996) Displacive phase transition in anorthoclase: the “plateau effect” and the effect of T1–T2 ordering on the transition temperature. Am Mineral 81:1332–1336

    Article  Google Scholar 

  • Hirose K, Fei YW, Mao HK (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397:53–56

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–228

    Article  Google Scholar 

  • Hushur A, Manghnani MH, Smyth JR, Nestola F, Frost DJ (2009) Crystal chemistry of hydrous forsterite and its vibration properties up to 41 Gpa. Am Mineral 94:751–760

    Article  Google Scholar 

  • Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

    Article  Google Scholar 

  • Jacobsen SD, Demouchy S, Frost DJ, Boffa-Ballaran T, Kung J (2005) A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: oxygen sites for hydrogen storage in the Earth’s interior. Am Mineral 90:61–70

    Article  Google Scholar 

  • Johnson EA, Rossman GR (2003) The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am Mineral 88:901–911

    Article  Google Scholar 

  • Johnson EA, Rossman GR (2004) A survey of hydrous species and concentrations in igneous feldspars. Am Mineral 89:586–600

    Article  Google Scholar 

  • Kingma KJ, Cohen RE, Hemley RJ, Mao HK (1995) Transformation of stishovite to a denser phase at lower mantle pressures. Nature 374:243–245

    Article  Google Scholar 

  • Koch-Müller M, Matsyuk S, Wirth B (2004) Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crystal origin beneath the Siberian platform. Am Mineral 89:921–931

    Article  Google Scholar 

  • Kronenberg AK, Yund RA, Rossman GR (1996) Stationary and mobile hydrogen defects in potassium feldspar. Geochimca et Cosmochimica Acta 60:4075–4094

    Article  Google Scholar 

  • Liu L (1978) High-pressure phase transformation of albite, jadeite and nepheline. Earth Planet Sci Lett 37:348–444

    Article  Google Scholar 

  • Liu X (2006) Phase relations in the system KAlSi3O8-NaAlSi3O8 at high pressure-high temperature conditions and their implication for the petrogenesis of lingunite. Earth Planet Sci Lett 246:317–325

    Article  Google Scholar 

  • Liu X, Ohfuji H, Nishiyama N, He Q, Sanehira T, Irifune T (2012) High-P behavior of anorthite composition and some phase relations of the CaO-Al2O3-SiO2 system to the lower mantle of the Earth, and their geophysical implications. J Geophys Res 117:B09205

    Google Scholar 

  • McKeown DA (2005) Raman spectroscopy and vibrational analyses of albite: from 25°C through the melting temperature. Am Mineral 90:1506–1517

    Article  Google Scholar 

  • Müller G (1988) Preparation of hydrogen and lithium feldspars by ion exchange. Nature 332:435–436

    Article  Google Scholar 

  • Nestola F (2008) Compressibility and high-pressure behavior of Ab63Or27An10 anorthoclase. Can Mineral 46:1443–1454

    Article  Google Scholar 

  • Peslier AH, Luhr JF, Post J (2002) Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett 201:69–86

    Article  Google Scholar 

  • Prewitt CT, Sueno S, Papike JJ (1976) The crystal structures of high albite and monalbite at high temperatures. Am Mineral 61:1213–1225

    Google Scholar 

  • Salje EHK (1985) Thermodynamics of sodium feldspar I: order parameter treatment and strain induced coupling effects. Phys Chem Miner 12:93–98

    Article  Google Scholar 

  • Salje EHK (1986) Raman spectroscopic investigation of the order parameter behaviour in hypersolvus alkali feldspar: displacive phase transition and evidence for Na-K site ordering. Phys Chem Miner 13:340–346

    Article  Google Scholar 

  • Salje EHK, Kuscholke B, Kroll H (1985) Thermodynamics of sodium feldspar II: experimental results and numerical solutions. Phys Chem Miner 12:99–107

    Article  Google Scholar 

  • Smyth JR, Frost DJ, Nestola F, Holl CM, Bromiley G (2006) Olivine hydration in the deep upper mantle: effects of temperature and silica activity. Geophys Res Lett 33:L15301

    Article  Google Scholar 

  • Stalder R, Ludwig T (2007) OH incorporation in synthetic diopside. Eur J Mineral 19:373–380

    Article  Google Scholar 

  • Stewart DB, Ribbe PH (1969) Structural explanation for variations in cell parameters of alkali feldspar with Al/Si ordering. Am J Sci 267:444–462

    Google Scholar 

  • Tutti F (2007) Formation of end-member NaAlSi3O8 hollandite-type structure (lingunite) in diamond anvil cell. Phys Earth Planet Inter 161:143–149

    Article  Google Scholar 

  • Winter JK, Okamura FP, Ghose S (1979) A high-temperature structural study of the albite, monalbite, and the analbite-monalbite phase transition. Am Mineral 64:409–423

    Google Scholar 

  • Xia Q, Pan Y, Chen D, Kohn S, Zhi X, Guo L, Cheng H, Wu Y (2000) Structural water in anorthoclase megacrysts from alkalic basalts: FTIR and NMR study. Acta Petrol Sin 16:484–491

    Google Scholar 

  • Xu HF, Veblen DR, Zhang YQ (1995) Structural modulation and phase transition in a Na-rich alkali feldspar. Am Mineral 80:897–906

    Article  Google Scholar 

  • Yang XZ (2012a) Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet Sci Lett 317:241–250

    Article  Google Scholar 

  • Yang XZ (2012b) An experimental study of H solubility in feldspars: effect of composition, oxygen fugacity, temperature and pressure and implications for crustal processes. Geochim Cosmochim Acta 97:46–57

    Article  Google Scholar 

  • Yang Y, Xia QK, Zhang PP (2015) Evolutions of OH groups in diopside and feldspars with temperature. Eur J Mineral 27:185–192

    Article  Google Scholar 

  • Ye Y, Schwering RA, Smyth JR (2009) Effect of hydration on thermal expansion of forsterite, wadsleyite and ringwoodite at ambient pressure. Am Mineral 94:899–904

    Article  Google Scholar 

  • Yund RA, Tullis J (1980) The effect of water, pressure, and strain on Al/Si order-disorder kinetics in feldspar. Contrib Miner Petrol 72:297–302

    Article  Google Scholar 

  • Zhang M, Wruck B, Barber AG, Salje E, Carpenter MA (1996) Phonon spectra of alkali feldspars: phase transition and solid solutions. Am Mineral 81:92–104

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Nos. 41102024 and 41225005). The authors thank Dr. Joseph R. Smyth (Professor in the Department of Geological Sciences, University of Colorado Boulder) for the language editing. Constructive comments from the two anonymous reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, Z.P., Tian, Z.Z. et al. High-temperature phase transition and local structure of a hydrous anorthoclase. Phys Chem Minerals 43, 111–118 (2016). https://doi.org/10.1007/s00269-015-0778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0778-1

Keywords

Navigation