Skip to main content
Log in

A structural study of cyanotrichite from Dachang by conventional and automated electron diffraction

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal structure of cyanotrichite, having general formula Cu4Al2(SO4)(OH)12·2H2O, from the Dachang deposit (China) was studied by means of conventional transmission electron microscopy, automated electron diffraction tomography (ADT) and synchrotron X-ray powder diffraction (XRPD). ADT revealed the presence of two different cyanotrichite-like phases. The same phases were also recognized in the XRPD pattern, allowing the perfect indexing of all peaks leading, after refinement to the following cell parameters: (1) a = 12.417(2) Å, b = 2.907(1) Å, c = 10.157(1) Å and β = 98.12(1); (2) a = 12.660(2) Å, b = 2.897(1) Å, c = 10.162(1) Å and β = 92.42(1)°. Only for the former phase, labeled cyanotrichite-98, a partial structure, corresponding to the [Cu4Al2(OH) 2+12 ] cluster, was obtained ab initio by direct methods in space group C2/m on the basis of electron diffraction data. Geometric and charge-balance considerations allowed to reach the whole structure model for the cyanotrichite-98 phase. The sulfate group and water molecule result to be statistically disordered over two possible positions, but keeping the average structure consistent with the C-centering symmetry, in agreement with ADT results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ankinovich EA, Gekht II, Zaitseva RI (1963) A new variety of cyanotrichite—carbonate-cyanotrichite. Zap Vser Miner Obshchest 92:458–463 (in Russ.)

    Google Scholar 

  • Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano G, Giacovazzo C, Mazzone A, Polidori G, Spagna R (2012) SIR2011: a new package for crystal structure determination and refinement. J Appl Crystallogr 45:357–361

    Article  Google Scholar 

  • Burns PC, Hawthorne FC (1996) Static and dynamic Jahn–Teller effects in Cu2+ oxysalts. Can Miner 33:633–639

    Google Scholar 

  • Capitani GC, Oleynikov P, Hovmoeller S, Mellini M (2006) A practical method to detect and correct for lens distortion in the TEM. Ultramicroscopy 106:66–74

    Article  Google Scholar 

  • Capitani GC, Mugnaioli E, Rius J, Gentile P, Catelani T, Lucotti A, Kolb U (2014) The Bi sulfates from the Alfenza Mine, Crodo, Italy: an automatic electron diffraction tomography (ADT) study. Am Miner 99:500–510

    Article  Google Scholar 

  • Chukanov NV, Karpenko VY, Rastsvetaeva RK, Zadov AE, Kuz’mina OV (1999) Khaidarkanite Cu4Al3(OH)14F3·2H2O, a new mineral from the Khaidarkan deposit, Kyrgyzstan. Zap Vser Miner Obshchest 128(3):58–63 (in Russ.)

    Google Scholar 

  • Doyle P, Turner P (1968) Relativistic Hartree–Fock X-ray and electron scattering factors. Acta Cryst A 24:390–397

    Article  Google Scholar 

  • Ferraris G, Ivaldi G (1988) Bond valence vs bond length in O ...O hydrogen bonds. Acta Cryst B 44:341–344

    Article  Google Scholar 

  • Gemmi M, Fischer J, Merlini M, Poli S, Fumagalli P, Mugnaioli E, Kolb U (2011) A new hydrous Al-bearing pyroxene as a water carrier in subduction zones. Earth Planet Sci Lett 310:422–428

    Article  Google Scholar 

  • Hager SL, Leverett P, Williams PA (2009) Possible structural and chemical relationships in the cyanotrichite group. Can Miner 47:635–648

    Article  Google Scholar 

  • Hawthorne FC, Krivovichev SV, Burns PC (2000) The crystal chemistry of sulfate minerals. In: Alpers CN, Jambor JL, Nordstrom BK (eds) Sulfate minerals: crystallography, geochemistry, and environmental significance. Rev.Mineral.Geochem 40 pp 1–112

  • Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. Proc R Soc Ser A 161:220–236

    Article  Google Scholar 

  • Jiang J, Jorda JL, Yu J, Baumes LA, Mugnaioli E, Diaz-Cabanas MJ, Kolb U, Corma A (2011) Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333:1131–1134

    Article  Google Scholar 

  • Kolb U, Gorelik TE, Kübel C, Otten MT, Hubert D (2007) Towards automated diffraction tomography: Part I—data acquisition. Ultramicroscopy 107:507–513

    Article  Google Scholar 

  • Kolb U, Gorelik TE, Otten MT (2008) Towards automated diffraction tomography. Part II—cell parameter determination. Ultramicroscopy 108:763

    Article  Google Scholar 

  • Kolb U, Gorelik TE, Mugnaioli E, Stewart A (2010) Structural characterization of organics using manual and automated electron diffraction. Polym Rev 50:385–409

    Article  Google Scholar 

  • Kolb U, Mugnaioli E, Gorelik TE (2011) Automated electron diffraction tomography—a new tool for nano crystal structure analysis. Cryst Res Technol 46:542–554

    Article  Google Scholar 

  • Lane MD (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. Am Miner 92:1–18

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory report LAUR 86–748

  • Lausi A, Busetto E, Leoni M, Scardi P (2006) The MCX project: a Powder Diffraction beamline at ELETTRA. Synchrotron Radiat Nat Sci 5:1–2

    Google Scholar 

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H…O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Google Scholar 

  • Mason B (1961) The identity of namaqualite with cyanotrichite. Mineral Mag 32:737–738

    Article  Google Scholar 

  • Mugnaioli E, Kolb U (2013) Applications of automated diffraction tomography (ADT) on nanocrystalline porous materials. Microporous Mesoporous Mater 166:93–101

    Article  Google Scholar 

  • Mugnaioli E, Gorelik T, Kolb U (2009a) ‘‘Ab initio’’ structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109:758–765

    Article  Google Scholar 

  • Mugnaioli E, Capitani GC, Nieto F, Mellini M (2009b) Accurate and precise lattice parameters by selected area electron diffraction in the transmission electron microscope. Am Miner 94:793–800

    Article  Google Scholar 

  • Mugnaioli E, Andrusenko I, Schüler T, Loges N, Dinnebier RE, Panthöfer M, Tremel W, Kolb U (2012) Ab initio structure determination of vaterite by automated electron diffraction. Angew Chem Int Ed Engl 51:7041–7045

    Article  Google Scholar 

  • NanoMEGAS (2004) Advanced Tools for Electron Diffraction. http://www.nanomegas.com

  • Palache C, Berman H, Frondel C (1951) The system of mineralogy II, 7th edn. Wiley, New York, pp 578–579

    Google Scholar 

  • Palmer KJ, Wong RY, Lee KS (1972) The crystal structure of ferric ammonium sulfate trihydrate, FeNH4(SO4)2·3H2O. Acta Cryst B28:236–241

    Article  Google Scholar 

  • Percy J (1850) Chemical examination of lettsomite. Phil Mag Ser 3(36):100–103

    Google Scholar 

  • Rastsvetaeva RK, Chukanov NV, Karpenko VU (1997) The crystal structure of a new compound Cu4Al3(OH)14F3(H2O)2. Dokl Akad Nauk 353:354–357

    Google Scholar 

  • Ross SD (1974) Sulphates and other oxy-anions of group VI. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society, London, pp 423–444

    Chapter  Google Scholar 

  • Rozhdestvenskaya I, Mugnaioli E, Czank M, Depmeier W, Kolb U, Reinholdt A, Weirich T (2010) The structure of charoite, (K, Sr, Ba, Mn)15–16(Ca, Na)32[(Si70(O, OH)180)](OH, F)4.0·nH2O, solved by conventional and automated electron diffraction. Mineral Mag 74:159–177

    Article  Google Scholar 

  • Rozhdestvenskaya I, Mugnaioli E, Czank M, Depmeier W, Kolb U, Merlino S (2011) Essential features of the polytypic charoite-96 structure compared to charoite-90. Mineral Mag 75:2833–2846

    Article  Google Scholar 

  • Sarp H, Perroud P (1991) Camerolaite, Cu4Al2[HSbO4, SO4](OH)10(CO3)·2H2O, a new mineral from Cap Garonne mine, Var, France. Neues Jahrb Miner Monatsh 2:481–486

    Google Scholar 

  • Sheldrick GM (1997) SHELXL97: program for the refinement of crystal structures. University of Gottingen, Gottingen

    Google Scholar 

  • Vincent R, Midgley P (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53:271–282

    Article  Google Scholar 

  • Walenta K (2001) Eincyanotrichitähnliches Mineral von der Grube Clara. Erzgräber 15:29–35

    Google Scholar 

  • Werner AG (1808): Mineralogische tabellen. In: Karsten DLG, Rottman (eds) 2nd edn., Berlin, Germany, p 62

Download references

Acknowledgments

We thank Ute Kolb (University of Mainz) for technical support in ADT experiments. The authors are grateful to Stefano Merlino for constructive discussion. We thank two anonymous reviewers for their helpful suggestions. Funding for this study was provided through the Italian project FIR2013 “Exploring the nanoworld.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Ventruti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventruti, G., Mugnaioli, E., Capitani, G. et al. A structural study of cyanotrichite from Dachang by conventional and automated electron diffraction. Phys Chem Minerals 42, 651–661 (2015). https://doi.org/10.1007/s00269-015-0751-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0751-z

Keywords

Navigation