Skip to main content

Advertisement

Log in

Melting and decomposition of MgCO3 at pressures up to 84 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Magnesium carbonate MgCO3 (magnesite) was experimentally studied at pressures of 12–84 GPa and temperatures between 1,600 and 3,300 K. We applied the high-pressure technique using a multianvil press and a diamond anvil cell with laser heating. The phase relations and melting of magnesite were investigated by means of Raman and time-resolved multi-wavelength spectroscopy. Magnesite is found to melt congruently within the entire studied pressure range at temperatures of 2,100–2,650 K. At temperatures above 2,700 K, we observed decomposition of magnesite with formation of MgO and a carbon phase (diamond). Our results demonstrate that at high pressures, the magnesium carbonate melt can exist at a wide range of thermodynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akahama Y, Kawamura H (2006) Pressure calibration of diamond anvil Raman gauge to 310 GPa. J Appl Phys 100:043516. doi:10.1063/1.2335683

    Article  Google Scholar 

  • Biellmann C, Gillet P, Guyot F et al (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth Planet Sci Lett 118:31–41. doi:10.1016/0012-821X(93)90157-5

    Article  Google Scholar 

  • Boulard E, Gloter A, Corgne A et al (2011) New host for carbon in the deep Earth. 108:5184–5187. doi:10.1073/pnas.1016934108

  • Boulard E, Menguy N, Auzende AL et al (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res 117:B02208. doi:10.1029/2011JB008733

    Google Scholar 

  • Brenker FE, Vollmer C, Vincze L et al (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9. doi:10.1016/j.epsl.2007.02.038

    Article  Google Scholar 

  • Bulanova GP, Pavlova LP (1987) Magnesite peridotite mineral association in a diamond from the Mir pipe. Dokl Akad Nauk SSSR 295:1452–1456

    Google Scholar 

  • Bundy FP, Bassett WA, Weathers MS et al (1996) The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon N Y 34:141–153. doi:10.1016/0008-6223(96)00170-4

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13. doi:10.1016/j.epsl.2010.06.039

    Article  Google Scholar 

  • Dubrovinskaia N, Eska G, Sheshin GA, Braun H (2006) Superconductivity in polycrystalline boron-doped diamond synthesized at 20 GPa and 2700 K. J Appl Phys 99:033903. doi:10.1063/1.2166645

    Article  Google Scholar 

  • Dubrovinsky L, Glazyrin K, McCammon C et al (2009) Portable laser-heating system for diamond anvil cells. J Synchrotron Radiat 16:737–741. doi:10.1107/S0909049509039065

    Article  Google Scholar 

  • Fiquet G, Guyot F, Kunz M et al (2002) Structural refinements of magnesite at very high pressure. Am Mineral 87:1261–1265

    Google Scholar 

  • Frost D, Poe B, Tronnes R et al (2004) A new large-volume multianvil system. Phys Earth Planet Inter 143–144:507–514. doi:10.1016/j.pepi.2004.03.003

    Article  Google Scholar 

  • Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behavior of calcite, magnesite, dolomite and aragonite. Phys Chem Miner. doi:10.1007/BF00202245

    Google Scholar 

  • Hanfland M, Syassen K (1985) A Raman study of diamond anvils under stress. J Appl Phys 57:2752. doi:10.1063/1.335417

    Article  Google Scholar 

  • Irving AJ, Wyllie PJ (1973) Melting relationships in CaO-CO2 and MgO-CO2 to 36 kilobars with comments on CO2 in the mantle. Earth Planet Sci Lett 20:220–225. doi:10.1016/0012-821X(73)90161-1

    Article  Google Scholar 

  • Isshiki M, Irifune T, Hirose K et al (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63. doi:10.1038/nature02181

    Article  Google Scholar 

  • Ito E, Katsura T (1992) High pressure research: application to earth and planetary sciences. Geophys Monogr Ser 67:315–322. doi:10.1029/GM067

    Google Scholar 

  • Kaminsky FV, Wirth R, Schreiber A (2014) Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association. Can Mineral 51:669–688. doi:10.3749/canmin.51.5.669

    Article  Google Scholar 

  • Katsura T, Ito E (1990) Melting and subsolidus phase relations in the MgSiO3–MgCO3 system at high pressures: implications to evolution of the Earth’s atmosphere. Earth Planet Sci Lett 99:110–117. doi:10.1016/0012-821X(90)90074-8

    Article  Google Scholar 

  • Katsura T, Yoneda A, Yamazaki D et al (2010) Adiabatic temperature profile in the mantle. Phys Earth Planet Inter 183:212–218. doi:10.1016/j.pepi.2010.07.001

    Article  Google Scholar 

  • Kupenko I, Dubrovinsky L, Dubrovinskaia N et al (2012) Portable double-sided laser-heating system for Mössbauer spectroscopy and X-ray diffraction experiments at synchrotron facilities with diamond anvil cells. Rev Sci Instrum 83:124501. doi:10.1063/1.4772458

    Article  Google Scholar 

  • Litasov KD, Goncharov AF, Hemley RJ (2011) Crossover from melting to dissociation of CO2 under pressure: implications for the lower mantle. Earth Planet Sci Lett 309:318–323. doi:10.1016/j.epsl.2011.07.006

    Article  Google Scholar 

  • Litvin YuA, Vasiliev PG, Bobrov AV et al (2011) Parental media for diamonds and primary inclusions by evidence of physicochemical experiment. Vestn Otd Nauk o Zemle RAN 3:1–7. doi:10.2205/2011NZ000196

    Article  Google Scholar 

  • Litvin Yu, Spivak A, Solopova N, Dubrovinsky L (2014) On origin of lower-mantle diamonds and their primary inclusions. Phys Earth Planet Inter. doi:10.1016/j.pepi.2013.12.007

    Google Scholar 

  • Oganov AR, Ono S, Ma Y et al (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273:38–47. doi:10.1016/j.epsl.2008.06.005

    Article  Google Scholar 

  • Pippinger T, Dubrovinsky L, Glazyrin K et al (2011) Detection of melting by in situ observation of spherical-drop formation in laser-heated diamond-anvil cells 23:29–41

    Google Scholar 

  • Prakapenka VB, Kubo A, Kuznetsov A et al (2008) Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res 28:225–235. doi:10.1080/08957950802050718

    Article  Google Scholar 

  • Scott HP, Doczy VM, Frank MR et al (2013) Magnesite formation from MgO and CO2 at the pressures and temperatures of Earth’s mantle. Am Mineral 98:1211–1218. doi:10.2138/am.2013.4260

    Article  Google Scholar 

  • Shen G, Wang L, Ferry R et al (2010) A portable laser heating microscope for high pressure research. J Phys Conf Ser 215:012191. doi:10.1088/1742-6596/215/1/012191

    Article  Google Scholar 

  • Skorodumova NV (2005) Stability of the MgCO3 structures under lower mantle conditions. Am Mineral 90:1008–1011. doi:10.2138/am.2005.1685

    Article  Google Scholar 

  • Solopova NA, Litvin YuA, Spivak AV et al (2013) The phase diagram of Na carbonate, an alkaline component of the growth medium of ultradeep diamonds. Dokl Earth Sci 453:1106–1109. doi:10.1134/S1028334X13110068

    Article  Google Scholar 

  • Spivak AV, Litvin YuA, Ovsyannikov SV et al (2012) Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in static high pressure experiments up to 43 GPa and 3900K. J Solid State Chem 191:102–106. doi:10.1016/j.jssc.2012.02.041

    Article  Google Scholar 

  • Stagno V, Tange Y, Miyajima N, et al (2011) The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophys Res Lett 38. doi: 10.1029/2011GL049560

  • Tao R, Fei Y, Zhang L (2013) Experimental determination of siderite stability at high pressure. Am Mineral 98:1565–1572. doi:10.2138/am.2013.4351

    Article  Google Scholar 

  • Tschauner O, Mao H, Hemley R (2001) New transformations of CO2 at high pressures and temperatures. Phys Rev Lett 87:075701. doi:10.1103/PhysRevLett.87.075701

    Article  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the German Research Foundation (DFG) and the Russian Foundation for Basic Research (Nos. 13-05-00835, 14-05-31142 and 11-05-00401). N.D. thanks DFG for financial support through the Heisenberg Program and the DFG Project DU 954-8/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Solopova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solopova, N.A., Dubrovinsky, L., Spivak, A.V. et al. Melting and decomposition of MgCO3 at pressures up to 84 GPa. Phys Chem Minerals 42, 73–81 (2015). https://doi.org/10.1007/s00269-014-0701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0701-1

Keywords

Navigation